मात्रात्मक रूझान MCQ Quiz in हिन्दी - Objective Question with Answer for Quantitative Aptitude - मुफ्त [PDF] डाउनलोड करें
Last updated on Jun 6, 2025
Latest Quantitative Aptitude MCQ Objective Questions
मात्रात्मक रूझान Question 1:
किसी वस्तु के मूल्य में 22% की वृद्धि होती है। इसके उपभोग में कितने प्रतिशत (दो दशमलव स्थानों तक सही) की कमी करनी चाहिए ताकि कुल व्यय समान रहे?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 1 Detailed Solution
दिया गया है:
किसी वस्तु के मूल्य में 22% की वृद्धि होती है।
प्रयुक्त सूत्र:
मान लीजिए मूल उपभोग 100 इकाई है।
नया मूल्य = 100 + 22 = 122
कुल व्यय समान रहना चाहिए।
गणनाएँ:
मूल व्यय = 100 × 100
नया व्यय = 122 × (नया उपभोग)
⇒ 10000 = 122 × (नया उपभोग)
⇒ नया उपभोग = 10000/122
⇒ नया उपभोग ≈ 81.97 इकाई
उपभोग में कमी = 100 - 81.97
⇒ उपभोग में कमी ≈ 18.03 इकाई
प्रतिशत कमी = (18.03/100) × 100
⇒ प्रतिशत कमी ≈ 18.03%
∴ सही उत्तर विकल्प (4) है।
मात्रात्मक रूझान Question 2:
अपराजिता का वार्षिक वेतन, सोनिया के वार्षिक वेतन का 150% है। वेतन वृद्धि के बाद सोनिया का वेतन 20% बढ़ जाता है, जबकि अपराजिता का वेतन 12% बढ़ जाता है। यदि सोनिया का प्रारंभिक वेतन ₹6,00,000 था, तो वेतन वृद्धि के बाद अपराजिता का वेतन ( ₹ में) कितना है?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 2 Detailed Solution
दिया गया है:
सोनिया का प्रारंभिक वेतन = ₹6,00,000
अपराजिता का प्रारंभिक वेतन = सोनिया के वेतन का 150%
सोनिया की वेतन वृद्धि = 20%
अपराजिता की वेतन वृद्धि = 12%
प्रयुक्त सूत्र:
नया वेतन = प्रारंभिक वेतन × (1 + वृद्धि दर)
गणना:
अपराजिता का प्रारंभिक वेतन = 1.5 × ₹6,00,000
⇒ अपराजिता का प्रारंभिक वेतन = ₹9,00,000
अपराजिता का नया वेतन = ₹9,00,000 × (1 + 0.12)
⇒ अपराजिता का नया वेतन = ₹9,00,000 × 1.12
⇒ अपराजिता का नया वेतन = ₹10,08,000
∴ सही उत्तर विकल्प 1 है।
मात्रात्मक रूझान Question 3:
एक थैले में 4800 ग्राम चावल है। थैले में 20% चावल और मिलाया जाता है, जिसके बाद 10% मात्रा निकाल ली जाती है। फिर 15% मात्रा वापस थैले में मिलाई जाती है। अंत में, थैले से 25% चावल निकाल लिया जाता है। अब थैले का वजन कितना है (ग्राम में)?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 3 Detailed Solution
दिया गया है:
थैले में चावल का वजन = 4800 ग्राम
प्रयुक्त सूत्र:
नया वजन = मूल वजन + जोड़ा गया वजन - हटाया गया वजन
गणना:
4800 ग्राम का 20% जोड़ा गया है:
जोड़ा गया वजन = 4800 × 20 / 100 = 960 ग्राम
नया वजन = 4800 + 960 = 5760 ग्राम
5760 ग्राम का 10% निकाल लिया गया है:
हटाया गया वजन = 5760 × 10 / 100 = 576 ग्राम
नया वजन = 5760 - 576 = 5184 ग्राम
5184 ग्राम का 15% वापस जोड़ा गया है:
जोड़ा गया वजन = 5184 × 15 / 100 = 777.6 ग्राम
नया वजन = 5184 + 777.6 = 5961.6 ग्राम
5961.6 ग्राम का 25% निकाल लिया गया है:
हटाया गया वजन = 5961.6 × 25 / 100 = 1490.4 ग्राम
नया वजन = 5961.6 - 1490.4 = 4471.2 ग्राम
अब थैले का वजन 4471.2 ग्राम है।
मात्रात्मक रूझान Question 4:
दो उम्मीदवारों के बीच हुए चुनाव में 64% मतदाताओं ने वोट डाले, जिनमें से 4% वोट अवैध घोषित किए गए। एक उम्मीदवार को 12,288 वोट मिले जो कुल वैध वोटों का 64% था। उस चुनाव में नामांकित वोटों की कुल संख्या ज्ञात कीजिए।
Answer (Detailed Solution Below)
Quantitative Aptitude Question 4 Detailed Solution
दिया गया है:
दो उम्मीदवारों के बीच हुए चुनाव में 64% मतदाताओं ने वोट डाले, जिनमें से 4% वोट अवैध घोषित किए गए। एक उम्मीदवार को 12,288 वोट मिले जो कुल वैध वोटों का 64% था।
प्रयुक्त सूत्र:
नामांकित वोटों की कुल संख्या = कुल वैध वोट / (डाले गए वैध वोटों का प्रतिशत × वोट डालने वाले मतदाताओं का प्रतिशत)
गणना:
कुल वैध वोट = 12,288 / 0.64
⇒ कुल वैध वोट = 19,200
कुल डाले गए वोट = कुल वैध वोट / 0.96
⇒ कुल डाले गए वोट = 19,200 / 0.96
⇒ कुल डाले गए वोट = 20,000
नामांकित वोटों की कुल संख्या = कुल डाले गए वोट / 0.64
⇒ नामांकित वोटों की कुल संख्या = 20,000 / 0.64
⇒ नामांकित वोटों की कुल संख्या = 31,250
∴ सही उत्तर विकल्प (1) है।
मात्रात्मक रूझान Question 5:
एक कॉलेज में लड़कों और लड़कियों की संख्या 5 ∶ 3 के अनुपात में है। यदि 24% लड़कों और 32% लड़कियों को कैंपस प्लेसमेंट में नौकरी नहीं मिली, तो कैंपस प्लेसमेंट में नौकरी प्राप्त करने वाले विद्यार्थियों का प्रतिशत है:
Answer (Detailed Solution Below)
Quantitative Aptitude Question 5 Detailed Solution
दिया गया है:
एक कॉलेज में लड़के और लड़कियों का अनुपात 5 : 3 है
24% लड़कों और 32% लड़कियों को कैंपस प्लेसमेंट में नौकरी नहीं मिली।
गणना:
माना कुल विद्यार्थियों की संख्या 800 है।
लड़कों की संख्या = 800 × 5/8 = 500
लड़कियों की संख्या = 800 × 3/8 = 300
प्रश्न के अनुसार,
24% लड़कों और 32% लड़कियों को कैंपस प्लेसमेंट में नौकरी नहीं मिली।
कैंपस प्लेसमेंट में नौकरी प्राप्त करने वाले लड़कों का प्रतिशत = 100% - 24% = 76%
⇒ 500 का 76% = 380
कैंपस प्लेसमेंट में नौकरी प्राप्त करने वाली लड़कियों का प्रतिशत = 100% - 32% = 68%
⇒ 300 का 68% = 204
कुल प्लेसमेंट = 380 + 204 = 584
∴ प्लेसमेंट का प्रतिशत = (584/800) × 100 = 73%
∴ कैंपस प्लेसमेंट में नौकरी प्राप्त करने वाले विद्यार्थियों का प्रतिशत 73% है।
Top Quantitative Aptitude MCQ Objective Questions
यदि x − \(\rm\frac{1}{x}\) = 3 है, तो x3 − \(\rm\frac{1}{x^3}\) का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Quantitative Aptitude Question 6 Detailed Solution
Download Solution PDFदिया गया है:
x - 1/x = 3
प्रयुक्त अवधारणा:
a3 - b3 = (a - b)3 + 3ab(a - b)
गणना:
x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)
⇒ (x - 1/x)3 + 3(x - 1/x)
⇒ (3)3 + 3 × (3)
⇒ 27 + 9 = 36
∴ x3 - 1/x3 का मान 36 है।
Alternate Methodयदि x - 1/x = a है, तब x3 - 1/x3 = a3 + 3a
यहाँ a = 3
x - 1/x3 = 33 + 3 × 3
= 27 + 9
= 36
एक दुकानदार, अंकित मूल्य पर 15 प्रतिशत छूट पर रेडियो बेचने पर 25 प्रतिशत का लाभ प्राप्त करता है। रेडियो के अंकित मूल्य और क्रय मूल्य के अनुपात को ज्ञात कीजिए।
Answer (Detailed Solution Below)
Quantitative Aptitude Question 7 Detailed Solution
Download Solution PDFदिया है:
लाभ = 25 प्रतिशत
छूट = 15 प्रतिशत
सूत्र:
MP/CP = (100 + लाभ%)/(100 - छूट%)
MP = अंकित मूल्य
CP = क्रय मूल्य
गणना:
हम जानते हैं कि –
MP/CP = (100 + लाभ %)/(100 – छूट %) ………. (1)
दिए गए सभी मानों को समीकरण (1) में रखिये तब हम प्राप्त करते हैं
MP/CP = (100 + 25)/(100 – 15)
⇒ 125/85
⇒ 25/17
∴ रेडियो के अंकित मूल्य और क्रय मूल्य का अनुपात 25 ∶ 17 होगासमान लंबाई की छह जीवाएं, 14√2 सेमी व्यास के अर्धवृत्त के अंदर खींची जाती हैं। छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 8 Detailed Solution
Download Solution PDFदिया है:
अर्धवृत्त का व्यास = 14√2 सेमी
त्रिज्या = 14√2/2 = 7√2 सेमी
जीवाओं की कुल संख्या = 6
संकल्पना:
चूंकि जीवाएं लंबाई में बराबर हैं, इसलिए वे केंद्र में समान कोणों बनाएंगी। एक त्रिज्यखंड के क्षेत्रफल की गणना करें और एक जीवा और त्रिज्या द्वारा गठित समद्विबाहु त्रिभुज के क्षेत्रफल को घटाएं, फिर वांछित परिणाम प्राप्त करने के लिए परिणाम को 6 से गुणा करें।
उपयोग किया गया सूत्र:
त्रिज्यखंड का क्षेत्रफल = (θ/360°) × πr2
त्रिभुज का क्षेत्रफल = 1/2 × a × b × Sin θ
गणना:
प्रत्येक जीवा द्वारा बनाया गया कोण = 180°/ जीवाओं की संख्या
⇒ 180°/6
⇒ 30°
त्रिज्यखंड AOB का क्षेत्रफल = (30°/360°) × (22/7) × 7√2 × 7√2
⇒ (1/12) × 22 × 7 × 2
⇒ (77/3) सेमी2
त्रिभुज AOB का क्षेत्रफल = 1/2 × a × b × Sin θ
⇒ 1/2 × 7√2 × 7√2 × Sin 30°
⇒ 1/2 × 7√2 × 7√2 × 1/2
⇒ 49/2 सेमी2
∴ छायांकित क्षेत्र का क्षेत्रफल = 6 × (त्रिज्यखंड AOB का क्षेत्रफल - त्रिभुज AOB का क्षेत्रफल)
⇒ 6 × [(77/3) - (49/2)]
⇒ 6 × [(154 - 147)/6]
⇒ 7 सेमी2
∴ छायांकित क्षेत्र का क्षेत्रफल 7 सेमी2 है।
220 मीटर × 70 मीटर का एक आयताकार बगीचा है। बगीचे के चारों ओर 4 मीटर चौड़ा रास्ता बनाया गया है। पथ का क्षेत्रफल क्या है?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 9 Detailed Solution
Download Solution PDFप्रयुक्त सूत्र
क्षेत्रफल = लंबाई × चौड़ाई
गणना
बगीचा EFGH चित्र में दिखाया गया है। जहाँ EF = 220 मीटर और EH = 70 मीटर है।
पथ की चौड़ाई 4 मीटर है।
अब चार रंगीन कोनों को छोड़कर पथ का क्षेत्रफल
= [2 × (220 × 4)] + [2 × (70 × 4)]
= (1760 + 560) वर्ग मीटर
= 2320 वर्ग मीटर
अब, 4 वर्गाकार रंगीन कोनों का क्षेत्रफल:
4 × (4 × 4)
{∵ प्रत्येक वर्ग की भुजा = 4 मीटर}
= 64 वर्ग मीटर
पथ का कुल क्षेत्रफल = चार रंगीन कोनों को छोड़कर पथ का क्षेत्रफल + वर्गाकार रंगीन कोने
⇒ पथ का कुल क्षेत्रफल = 2320 + 64 = 2384 वर्ग मीटर
∴ विकल्प 4 सही उत्तर है।
दो उम्मीदवारों के बीच एक चुनाव में, जीतने वाले उम्मीदवार को वैध मतों में से 70 प्रतिशत मत प्राप्त हुए और वह 3630 मतों के बहुमत से जीता। यदि डाले गए कुल मतों में से 75 प्रतिशत मत वैध हैं, तो डाले गए मतों की कुल संख्या कितनी है?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 10 Detailed Solution
Download Solution PDFदिया गया है:
वैध मत = कुल मतों का 75%
विजयी उम्मीदवार = वैध मतों में से 70%
उसने 3630 मतों के बहुमत से जीत हासिल की
पराजित उम्मीदवार = वैध मतों का 30%
गणना:
माना कुल मतों की संख्या 100x है
वैध मत = कुल मतों का 75%
= 0.75 × 100x
= 75x
विजयी उम्मीदवार का बहुमत 3630 है,
तब, जीतने और हारने वाले उम्मीदवार के बीच का अंतर = वैध मतों का (70 % - 30 %)
= वैध मतों का 40%
वैध मत = 75x
तब,
= 0.40 × 75x
= 30x
इसलिए, विजयी उम्मीदवार का बहुमत 30x है,
30x = 3630
x = 121
मतों की कुल संख्या 100x है,
= 100 × 121
= 12100
उत्तर 12100 है।
निम्न में से कौनसी संख्या सबसे बड़ी है?
\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)
Answer (Detailed Solution Below)
Quantitative Aptitude Question 11 Detailed Solution
Download Solution PDFप्रयुक्त अवधारणा
a.b̅ = a.bbbbbb
a.0b̅ = a.0bbbb
गणना
0.7 = 0.700000......
\(0.\bar7 = 0.77777 \ldots\)
\(0.0\bar7 = 0.077777 \ldots\)
\(0.\overline {07} = 0.070707 \ldots\)
अब, 0.7777… या \(0.\bar7\) सभी में सबसे बड़ा है।एक 400 मीटर लंबी ट्रेन को, विपरीत दिशा से समानांतर ट्रैक पर 60 किलोमीटर प्रति घंटे की चाल से आती हुई एक 300 मीटर लंबी ट्रेन को पार करने में 15 सेकंड लगते हैं। लंबी वाली ट्रेन की चाल किलोमीटर प्रति घंटे में क्या है ?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 12 Detailed Solution
Download Solution PDFदिया गया
पहली ट्रेन की लंबाई (L1) = 400 मीटर
दूसरी ट्रेन की लंबाई (L2) = 300 मीटर
दूसरी ट्रेन की गति (S2) = 60 किमी/घंटा
एक दूसरे को पार करने में लगा समय (T) = 15 s
अवधारणा:
जब दो वस्तुएँ विपरीत दिशाओं में चलती हैं तो सापेक्ष गति उनकी गति का योग होती है।
गणना:
माना कि पहली ट्रेन की गति = x किमी/घंटा है
कुल लंबाई = 300 + 400
समय = 15 सेकंड
प्रश्न के अनुसार:
700/15 = (60 + x) × 5/18
28 × 6 = 60 + x
x = 108 किमी/घंटा.
इसलिए, लंबी ट्रेन की गति 108 किमी प्रति घंटा है।
यदि पेट्रोल की कीमत 40 रु. प्रति लीटर. से बढ़कर 60 रु. प्रति लीटर हो जाती है, तो एक व्यक्ति को अपने खपत में कितनी कमी करनी पड़ेगी ताकि उसका व्यय समान रहे?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 13 Detailed Solution
Download Solution PDFदिया हुआ :
यदि पेट्रोल की कीमत 40 रु. प्रति लीटर. से बढ़कर 60 रु. प्रति लीटर हो जाती हैI
गणना :
माना खपत 100 लीटर है।
जब पेट्रोल की कीमत 40 रु. है, तो व्यय = 100 × 40
⇒ 4,000 रु.
पेट्रोल की कीमत 60 रु. होने पर,
60 × खपत = 4,000. रु.
खपत = 4,000/60 = 66.67 लीटर
∴ अभीष्ट % कमी = 100 - 66.67 = 33.33%
u : v = 4 : 7 और v : w = 9 : 7। यदि u = 72, तो w का मान क्या है?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 14 Detailed Solution
Download Solution PDFदिया गया है:
u : v = 4 : 7 and v : w = 9 : 7
प्रयुक्त सिद्धांत: इस प्रकार के प्रश्नों में, संख्या की गणना नीचे दिए गए सूत्र का उपयोग करके की जा सकती है
गणना:
u : v = 4 : 7 और v : w = 9 : 7
अनुपात को हल करने पर हमें प्राप्त होता है,
u ∶ v ∶ w = 36 ∶ 63 ∶ 49
⇒ u ∶ w = 36 ∶ 49
तो u = 72,
⇒ w = 49 × 72/36 = 98
∴ W का मान 98 है
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\) का मान क्या है?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 15 Detailed Solution
Download Solution PDFउपाय:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37