Indefinite Integrals MCQ Quiz - Objective Question with Answer for Indefinite Integrals - Download Free PDF

Last updated on Jul 11, 2025

Latest Indefinite Integrals MCQ Objective Questions

Indefinite Integrals Question 1:

Comprehension:

Directions:

If  x2e2xdx=e2x(ax2+bx+c)+D, then

Find the value of c

  1. 1/2
  2. 2/3
  3. 4/3
  4. 1/3

Answer (Detailed Solution Below)

Option 4 : 1/3

Indefinite Integrals Question 1 Detailed Solution

Calculation:

x2e2xdx=e2x(ax2+bx+c)+D

On differentiating both sides, we get

x2e2x=e2x(2ax+b)+(ax2+bx+c)(2e2x)

=e2x[2ax2+2(ab)]+(x+b2c)

a=1,2(ab)=0,b2c=0

a=1,b=1 and c=12

Hence, the correct answer is Option 4.

Indefinite Integrals Question 2:

Comprehension:

Directions:

If  x2e2xdx=e2x(ax2+bx+c)+D, then

Find the value of b

  1. 4
  2. 4/2
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Indefinite Integrals Question 2 Detailed Solution

Calculation:

x2e2xdx=e2x(ax2+bx+c)+D

On differentiating both sides, we get

x2e2x=e2x(2ax+b)+(ax2+bx+c)(2e2x)

=e2x[2ax2+2(ab)]+(x+b2c)

a=1,2(ab)=0,b2c=0

a=1,b=1 and c=12

Hence, the correct answer is Option 3.

Indefinite Integrals Question 3:

Comprehension:

Directions:

If  x2e2xdx=e2x(ax2+bx+c)+D, then

The value of a is 

  1. 1
  2. 2
  3. 4
  4. -2

Answer (Detailed Solution Below)

Option 1 : 1

Indefinite Integrals Question 3 Detailed Solution

Calculation:

x2e2xdx=e2x(ax2+bx+c)+D

On differentiating both sides, we get

x2e2x=e2x(2ax+b)+(ax2+bx+c)(2e2x)

=e2x[2ax2+2(ab)]+(x+b2c)

a=1,2(ab)=0,b2c=0

a=1,b=1 and c=12

Hence, the correct answer is Option 1.

Indefinite Integrals Question 4:

Let f(x)=2x(x2+1)(x2+3)dx.

If f(3)=12(loge5loge6), then f(4) is equal to

  1. 12(loge17loge19)
  2. loge17 - loge18
  3. 12(loge19loge17)
  4. loge19 - loge20

Answer (Detailed Solution Below)

Option 1 : 12(loge17loge19)

Indefinite Integrals Question 4 Detailed Solution

Calculation:

We know that the integral is of the form:

f(x)=12loge(x2+3x2+1)+C

Now, we substitute the given value of f(3) to find the constant C :

⇒ f(3)=12loge(65)+C

We are given that:

⇒ f(3)=12(loge5loge6)

Equating the two expressions for f(3):

⇒ 12loge(65)+C=12(loge5loge6)

Since both sides are equal, we conclude that C = 0 .

Thus, the function becomes:

⇒ f(x)=12loge(x2+3x2+1)

Now, we can calculate f(4):

⇒ f(4)=12loge(16+316+1)=12loge(1917)

Thus, the value of f(4) is:

⇒ 12loge(1917)

 12(loge19loge17)

Hence, the correct answer is Option 1.

Indefinite Integrals Question 5:

The integral (1+x1x)ex+1xdx is equal to

  1. (x1)ex+1x+c
  2. xex+1x+c
  3. (x+1)ex+1x+c
  4. (x+1)ex1x+c
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : xex+1x+c

Indefinite Integrals Question 5 Detailed Solution

Calculation:

Let I = (1+x1x)ex+1xdx

ex+1xdx+x(11x2)ex+1xdx

ex+1xdx+x(11x2)ex+1xdx

ex+1xdx+xex+1xdxddx(x)ex+1xdx

ex+1xdx+xex+1xdxex+1xdx [∵ (11x2)ex+1xdx=ex+1x]

xex+1x+c

∴ The value of the integral is xex+1x+c.

The correct answer is Option 2.

Top Indefinite Integrals MCQ Objective Questions

Evaluate cos2xdx

  1. x2+sin2x2+c
  2. x2+sin2x4+c
  3. x2sin2x4+c
  4. x2+cos2x4+c

Answer (Detailed Solution Below)

Option 2 : x2+sin2x4+c

Indefinite Integrals Question 6 Detailed Solution

Download Solution PDF

Concept:

1 + cos 2x = 2cos2 x

1 - cos 2x = 2sin2 x

cosxdx=sinx+c

 

Calculation:

I = cos2xdx

1+cos2x2dx

12(1+cos2x)dx

12[x+sin2x2]+c

x2+sin2x4+c

11625x2dx is equal to ?

  1.  sin1(5x4) + c
  2.  15sin1(5x4) + c
  3.  15sin1(x4) + c
  4.  15sin1(4x5) + c

Answer (Detailed Solution Below)

Option 2 :  15sin1(5x4) + c

Indefinite Integrals Question 7 Detailed Solution

Download Solution PDF

Concept:

1a2x2dx=sin1(xa)+c

Calculation:

I = 11625x2dx

116(5x)2dx

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = dt5

Now,

I = 15142t2dt

15sin1(t4) + c

15sin1(5x4) + c

2x+3dx is equal to?

  1. (2x+3)1/23+c
  2. (2x+3)3/22+c
  3. (2x+3)3/23+c
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : (2x+3)3/23+c

Indefinite Integrals Question 8 Detailed Solution

Download Solution PDF

Concept:

xndx=xn+1n+1+c

 

Calculation:

I = 2x+3dx

Let 2x + 3 = t2

Differenating with respect to x, we get

⇒ 2dx = 2tdt

⇒ dx = tdt

Now,

I = t2×tdt

t2dt

t33+c

∵ 2x + 3 = t2

⇒  (2x + 3)1/2 = t

⇒ (2x + 3)3/2 = t3

⇒ I = (2x+3)3/23+c

sin5xdx=

  1. cos5x5+c
  2. cos5x5+c
  3. 5cos 5x + c
  4. cos4x5+c

Answer (Detailed Solution Below)

Option 2 : cos5x5+c

Indefinite Integrals Question 9 Detailed Solution

Download Solution PDF

Concept:

sinxdx=cosx+c

Calculation:

I = sin5xdx

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = dt5

Now,

I = 15sintdt

15(cost)+c

cos5x5+c

The value of exe2x4dx  will be ______, where C is an arbitrary constant.

  1. 12log|ex+1ex1|+C
  2. 13log|2ex12ex+1|+C
  3. 14log|ex2ex+2|+C
  4. 12log|e2x+2e2x2|+C

Answer (Detailed Solution Below)

Option 3 : 14log|ex2ex+2|+C

Indefinite Integrals Question 10 Detailed Solution

Download Solution PDF

Concept:

From the Standard integral:

dxx2a2=12alog |xax+a|+C, x>a

Calculation:

exe2x4dx

ex(ex)2(2)2dx

let t = ex

dt = ex dx

dt(t)2(2)2

From the standard integral:

dt(t)2(2)2=14log |tat+a|+C

Put t = ex in the above equation, we get:

exe2x4dx=14log|ex2ex+2|+C

Note:

Some important formulas of integration are:

\(\smallint \frac{{{dx}}}{{{a^2} - x^2}}=\frac{1}{2a}log \ |\frac{a+x}{a-x}|+C, \ x

dxa2x2=sin1(xa)+C

dxx2+a2=log( x+a2+x2)+C

Evaluate: sinx(cosx)3dx

  1. tan x - sin x + c
  2. tan2x2+C
  3. sin2x2+C
  4. log (cos2x) + c

Answer (Detailed Solution Below)

Option 2 : tan2x2+C

Indefinite Integrals Question 11 Detailed Solution

Download Solution PDF

Concept:

  • sec2xdx=tanx+C
  • secxtanxdx=secx+c

Calculation:

Let I = sinx(cosx)3dx 

=tanxsec2xdx

Let tan x = t

 sec2x dx = dt

Therefore, the integral becomes.

=tdt

=t22+C

Re-substitute t = tan x.

Thus,

=tan2x2+C

What is the integral of f(x) = 1 + x2 + x4 with respect to x2?

  1. x+x33+x55+C
  2. x33+x55+C
  3. x2+x44+x66+C
  4. x2+x42+x63+C

Answer (Detailed Solution Below)

Option 4 : x2+x42+x63+C

Indefinite Integrals Question 12 Detailed Solution

Download Solution PDF

Concept: 

xn dx=xn+1n+1+C

f(x) dx2 = (1+x2+x4) d(x2)      ....(i)

Calculation:

Let, x2 = u

From equation (i)

f(x) dx2 = (1+u+u2) du

⇒ u + u22 + u33+ C

Now putting the value of u,

​⇒ f(x)dx2 = x2 +​ x42 + x63 + C

∴ The required integral is x2 +​ x42 + x63 + C.

What is sin3xcosxdx equal to?

  1. cos4 x + c
  2. sin4 x + c
  3. (1sin2x)24+c
  4. (1cos2x)24+c

Answer (Detailed Solution Below)

Option 4 : (1cos2x)24+c

Indefinite Integrals Question 13 Detailed Solution

Download Solution PDF

Concept:

  • xndx=xn+1n+1+c

 

Calculation:

Let I = sin3xcosxdx

Let sin x = t

Now differentiating both sides, we get

⇒ cos x dx = dt

Now,

I=sin3xcosxdx=t3dt=t44+c

I=sin4x4+c=(1cos2x)24+c

∴ Option 4 is correct answer

cos2xcos2x.sin2xdx= ?

  1. -cot x - tan x + c
  2. cot x - tan x + c
  3. cot x + tan x + c
  4. tan x - cot x + c

Answer (Detailed Solution Below)

Option 1 : -cot x - tan x + c

Indefinite Integrals Question 14 Detailed Solution

Download Solution PDF

Concept:

  • cos 2x = cosx - sinx

Calculation:

cos2xcos2x.sin2xdx

cos2xsin2xcos2x.sin2xdx

(1sin2x1cos2x)dx

1sin2xdx1cos2xdx

cosec2xdxsec2xdx

= - cot x - tan x + C

11+exdx is equal to

  1. loge(ex+1ex)+e
  2. loge(ex1ex)+e
  3. loge(exex+1)+e
  4. loge(exex1)+e

Answer (Detailed Solution Below)

Option 3 : loge(exex+1)+e

Indefinite Integrals Question 15 Detailed Solution

Download Solution PDF

Concept:

1xdx=logx+c

 

Calculation:

Let I=11+exdx=exex+1dx

Assume e-x + 1 = t

Differenatiang with respect to x, we get

⇒ -e-x dx = dt

∴ e-x dx = -dt

=dtt=logt+c=log(ex+1)+c=log(1ex+1)+c=log(ex1+ex)+c

Get Free Access Now
Hot Links: teen patti diya all teen patti master teen patti king