Indefinite Integrals MCQ Quiz in मल्याळम - Objective Question with Answer for Indefinite Integrals - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 23, 2025

നേടുക Indefinite Integrals ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Indefinite Integrals MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Indefinite Integrals MCQ Objective Questions

Top Indefinite Integrals MCQ Objective Questions

Indefinite Integrals Question 1:

What is the value of ∫ ex(sin x - cos x) dx?

  1. - ex cos x + C
  2. ex sin x + C
  3. ex sec x + C
  4. None of these.

Answer (Detailed Solution Below)

Option 1 : - ex cos x + C

Indefinite Integrals Question 1 Detailed Solution

Concept:

  • Integration by Parts:

    ∫ f(x) g(x) dx = f(x) ∫ g(x) dx - ∫ [f'(x) ∫ g(x) dx] dx.

  • ∫ sin x dx = - cos x + C

 

Calculation:

Let I = ​​∫ ex(sin x - cos x) dx.

⇒ I = ∫ ex sin x dx - ∫ ex cos x dx

⇒ I = ex ∫ sin x dx - ∫ [ex ∫ sin x dx] dx - ∫ ex cos x dx

⇒ I = - ex cos x dx + ∫ ex cos x dx - ∫ ex cos x dx + C

⇒ I = - ex cos x + C

 

As we know, ∫ ex [f(x) + f'(x)]dx = ex f(x) + c

Let f(x) = -cos x

So, f'(x) = sin x

Now, I =  ∫ ex(sin x - cos x) dx

=  ​​∫ ex(- cos x + sin x) dx

∫ ex [f(x) + f'(x)]dx

=  ex f(x) + c

- ex cos x + C

Indefinite Integrals Question 2:

ex.sinex dx is equal to?

  1. sin ex + C
  2. - cos ex + C
  3. cos ex + C
  4. - sin ex + C

Answer (Detailed Solution Below)

Option 2 : - cos ex + C

Indefinite Integrals Question 2 Detailed Solution

Concept:

Using substitution method in indefinite integral and using formula sinx dx=cosx+C

Solution:

ex.sinex dx

Substitute u = ex → dudx=exdu=exdx

=sinu du

=cosu+C

Undo substitution u = ex

=cosex+C

∴ The correct option is (2)

Indefinite Integrals Question 3:

dxsinx+cosx=

  1. log tan(π8+x2)+ c
  2. log tan (π8x2) + c
  3. 12 log tan (π8+x2) + c
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 12 log tan (π8+x2) + c

Indefinite Integrals Question 3 Detailed Solution

Concept:

  • sin2x + cos2x = 1  ...(i)
  • sin 2x  = 2 sin x cos x   ...(ii)
  • sin (x + y) = sin x cos y + sin y cos x
  • cos 2x = 2cos2x1=12sin2x
 

Calculation:

1sinx+cosxdx

Multiplying numerator and denominator by 12,

⇒ 121(12sinx+12cosx)dx 

⇒ 121(sinxcosπ4+sinπ4cosx)dx 

⇒ 121sin(x+π4)dx 

⇒ 1212sin(x2+π8)cos(x2+π8)dx 

Multiplying numerator and denominator by cos(x2+π8),

⇒ 122sec2(x2+π8)tan(x2+π8)dx 

Consider tan(x2+π8) = t ⇒ 12sec2(x2+π8)dx=dt

⇒ 12dtt 

⇒ 12log (t) + c

⇒ 12logtan(x2+π8)+c

∴ The correct answer is option (3).

Indefinite Integrals Question 4:

Evaluate sin2xdx

  1. x2+sin2x2+c
  2. x2+sin2x4+c
  3. x2sin2x4+c
  4. x2+cos2x4+c

Answer (Detailed Solution Below)

Option 3 : x2sin2x4+c

Indefinite Integrals Question 4 Detailed Solution

Concept:

1 + cos 2x = 2cos2 x

1 - cos 2x = 2sin2 x

cosxdx=sinx+c

 

Calculation:

I = sin2xdx

1cos2x2dx

12(1cos2x)dx

12[xsin2x2]+c

x2sin2x4+c

Indefinite Integrals Question 5:

Evaluate:

cos(ln(x))xdx

  1. sin(ln(x)) + C
  2. cos(ln(x)) + C
  3. cosxx2+C
  4. sinxx2+C

Answer (Detailed Solution Below)

Option 1 : sin(ln(x)) + C

Indefinite Integrals Question 5 Detailed Solution

Concept:

1. Integration by Substitution:

  • If the given integration is of the form g(f(x))f(x)dx where g(x) and f(x) are both differentiable functions then we substitute f(x)=u which implies that f(x)dx=du.
  • Therefore, the integral becomes g(u)du which can be solved by general formulas.

 

Solution:

In the given problem substitute ln(x)=u therefore, dxx=du.

The given integral becomes

cosudu=sinu+C

Resubstitute u=ln(x).

cos(lnx)xdx=sin(lnx)+C

Indefinite Integrals Question 6:

1ex+exdx=

  1. log |cot(ex) + tan(ex)|
  2. sin1(ex)+c
  3. log |1 + ex|
  4. tan1(ex)+c

Answer (Detailed Solution Below)

Option 4 : tan1(ex)+c

Indefinite Integrals Question 6 Detailed Solution

Concept:

11+x2dx=tan1x+c

x1=1x

 

Calculation:

Let, I = 1ex+exdx

1ex+1exdx                (∵ x1=1x)

exe2x+1dx

Now, let ex = t

⇒ ex dx = dt

∴ I = dtt2+1

tan1t+c             (∵ 11+x2dx=tan1x+c)

tan1(ex)+c         (∵ ex = t)

Hence, option (4) is correct. 

Indefinite Integrals Question 7:

What is ∫ cot 2x dx is equal to?

  1. log|sin2x|+c
  2. 12log|sin2x|+c
  3. 12log|sec2x|+c
  4. log|sec2x|+c

Answer (Detailed Solution Below)

Option 2 : 12log|sin2x|+c

Indefinite Integrals Question 7 Detailed Solution

Concept:

1xdx=log|x|+c

 

Calculation:

I = ∫ cot 2x dx

=cos2xsin2xdx

Let sin 2x = t

Differentiating with respect to x, we get

⇒ 2 cos 2x dx = dt

⇒ cos 2x dx = dt2

I=121tdt

12log|t|+c

12log|sin2x|+c

Indefinite Integrals Question 8:

Evaluate: dxx(x+2)

  1. 12log|2xx+2|+C
  2. 12log|2xx+2|+C
  3. 12log|xx+2|+C
  4. 12log|xx+2|+C

Answer (Detailed Solution Below)

Option 4 : 12log|xx+2|+C

Indefinite Integrals Question 8 Detailed Solution

Concept:

Partial Fraction:

Factors in the denominator

Corresponding Partial Fraction

(x - a)

Axa

(x – b)2

Axb+B(xb)2

(x - a) (x – b)

A(xa)+B(xb)

(x – c)3

Axc+B(xc)2+C(xc)3

(x – a) (x2 – a)

A(xa)+Bx+C(x2a)

(ax2 + bx + c)

Ax+B(ax2+bx+c)

Calculation:

Here we have to find the value of dxx(x+2)

Let 1x(x+2)=Ax+Bx+2

⇒ 1 = A (x + 2) + B x --------(1)

By putting x = 0 on both the sides of (1) we get A = 1/2

By putting x = - 2 on both the sides of (1) we get B = - 1/2

1x(x+2)=12x12x+4

dxx(x+2)=12dxx12dxx+2

As we know that dxx=log|x|+C  where C is a constant

dxx(x+2)=12log|xx+2|+Cwhere C is a constant

Indefinite Integrals Question 9:

If 1sin2x dx = A sinx + B cosx + C, where 0 < x < π4, then which one of the following is correct?

  1. A + B = 0
  2. A + B - 2 = 0
  3. A + B + 2 = 0
  4. A + B - 1 = 0

Answer (Detailed Solution Below)

Option 2 : A + B - 2 = 0

Indefinite Integrals Question 9 Detailed Solution

Concept:

sin2x + cos2x = 1

sinxdx=cosx

cosxdx=sinx

Calculation:

We have 1sin2x dx = A sinx + B cosx + C

⇒ (sin2x+cos2x2sinxcosx)dx = A sinx + B cosx + C

⇒ ((sinxcosx)2)dx = A sinx + B cosx + C

⇒ (|(sinxcosx)|)dx = A sinx + B cosx + C     ----(i)

If 0 < x < π4, then sinx < cosx

⇒ |sinx - cosx| = -sinx + cosx    -----(ii)

Now from (i) and (ii), we get 

⇒ ( sinx+cosx) dx = A sinx + B cosx + C

⇒ cosx + sinx + C = A sinx + B cosx + C

On comparing A = 1, B = 1 and C = 0

Hence, A + B - 2 = 0 is correct.

Indefinite Integrals Question 10:

Evaluate the following:

5(x61)(x21) dx

  1. x5+53x3+5x+c
  2. x553x2+5x+c
  3. x553x2+5x+c
  4. x5+53x25x+c

Answer (Detailed Solution Below)

Option 1 : x5+53x3+5x+c

Indefinite Integrals Question 10 Detailed Solution

Formula Used:

(a3 - b3) = (a - b) × (a2 + b2 + ab)

∫ xn = nxn-1 + c

Calculation:

(x6 - 1) = (x2 - 1) × (x4 + 1 + x2)

⇒ 5 × (x6 - 1)/(x2 - 1) = 5(x4 + 1 + x2)

Now,

I = 5(x61)(x21) dx 

I = ∫ (5x4 + 5 + 5x2) dx

On integration 

⇒ 5x5/5 + 5x + 5x3/3 + c

⇒ x5 + 5x3/3 + 5x + c

∴ x5+53x3+5x+c

Get Free Access Now
Hot Links: all teen patti game rummy teen patti teen patti app teen patti tiger