Definite Integrals MCQ Quiz - Objective Question with Answer for Definite Integrals - Download Free PDF

Last updated on Jun 27, 2025

Latest Definite Integrals MCQ Objective Questions

Definite Integrals Question 1:

Comprehension:

Consider the following for the two (02) items that follow:
Let f(x) = [x2] where [.] is the greatest integer function.

22f(x)dx  is equal to ?

  1. 6322
  2. 632
  3. 63+22
  4. 6+322

Answer (Detailed Solution Below)

Option 1 : 6322

Definite Integrals Question 1 Detailed Solution

Calculation:

Given,

The function is f(x)=x2.

We are tasked with finding the value of 22f(x)dx.

We can break the integral into two parts as follows:

22f(x)dx=232dx+323dx

For the range 2x3, x2=2. So the first part of the integral is:

232dx=2×(32)

For the range 3x2, x2=3. So the second part of the integral is:

323dx=3×(23)

Now, we calculate the values:

2×(32)=2322

3×(23)=633

Combining the two parts:

2322+633=6223

Hence, the correct answer is Option 1.

Definite Integrals Question 2:

Comprehension:

Consider the following for the two (02) items that follow:
Let f(x) = [x2] where [.] is the greatest integer function.

What  23f(x)dx equal to?

  1. 32
  2. 2(32)
  3. 32
  4. 1

Answer (Detailed Solution Below)

Option 2 : 2(32)

Definite Integrals Question 2 Detailed Solution

Calculation:

Given,

The function is f(x)=x2, where x2 is the greatest integer function.

We are tasked with finding:

323x2dx

Decomposing the integral based on the function:

For \32x<1, x2 lies between 34 and 1, so x2=0. Therefore,

3210dx=0

For1x<2, x2  lies between 1 and 2, so x2=1. Therefore,

121dx=21

For 2x<3, x2  lies between 2 and 3, so x2=2 . Therefore,

232dx=2(32)

Summing up all the results:

323x2dx=0+(21)+2(32)

= 2(32).

Hence, the correct answer is Option 2. 

Definite Integrals Question 3:

The minimum value of the function f(x)=02e|xt|dt is 

  1. 2(e - 1) 
  2. 2e - 1 
  3. 2
  4. e(e - 1) 

Answer (Detailed Solution Below)

Option 1 : 2(e - 1) 

Definite Integrals Question 3 Detailed Solution

Calculation:

The given function is:

f(x)=02e|xt|dt

We handle the absolute value function |x - t|  by splitting the integral into two cases based on the value of x  relative to t.

If xt, then |xt|=xt, and if x < t , then |x - t| = t - x .

The function can then be written as:

f(x)=0xextdt+x2etxdt

First, compute the first integral:

0xextdt=ex(1ex)

Now, compute the second integral:

x2etxdt=ex(e2ex)

The total function is:

f(x)=ex(1ex)+ex(e2ex)

Thus, simplifying:

f(x)=ex+exe22

To minimize the function, we differentiate f(x) and set it equal to zero.

f(x)=exexe2

Set f'(x) = 0:

ex=exe2

e2x=e2

Taking the natural logarithm:

2x=2 ⇒ x = 1.

 

Substitute x = 1 into f(x) to find the minimum value:

f(1)=e+e2=2e2 = 2 (e - 1)

Hence, the correct answer is Option 1

Definite Integrals Question 4:

0111+x2dx=

  1. π4
  2. 0
  3. π2
  4. π3
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : π4

Definite Integrals Question 4 Detailed Solution

Concept:

11+x2dx=tan1x

Calculation:

0111+x2dx=[tan1x]01=[tan11tan10]=π4

Definite Integrals Question 5:

What is the value of π/4π/4(sinxtanx)dx?

  1. 12+ln(22)
  2. 12
  3. 0
  4. √2
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 0

Definite Integrals Question 5 Detailed Solution

Concept:

Integral properties: Consider a function f(x) defined on x.

  • aaf(x)dx={20af(x)dx,f(x)=f(x)0,f(x)=f(x)


Calculation:

Let f(x) = sin x – tan x

Checking the function is odd or even,

f(-x) = sin (-x) – tan (-x)

f(-x) = sin x + tan x

f(-x) = –{sin x – tan x}

f(-x) = f(x)

Hence, the function is odd.

And we know that, aaf(x)dx=0  if f(x) is odd.

∴ π/4π/4(sinxtanx)dx=0

Top Definite Integrals MCQ Objective Questions

What is 01x(1x)9dx equal to?

  1. 1/110
  2. 1/132
  3. 1/148
  4. 1/140

Answer (Detailed Solution Below)

Option 1 : 1/110

Definite Integrals Question 6 Detailed Solution

Download Solution PDF

Concept:

Definite Integral properties:

abf(x)dx=abf(a+bx)dx
Calculation:

Let f(x) = x(1 – x)9

Now using property, abf(x)dx=abf(a+bx)dx

01x(1x)9dx=01(1x){1(1x)}9dx

01(1x)x9dx

01(x9x10)dx

[x1010x1111]01

⇒ 1/10 – 1/11

1/110

∴ The value of integral 01x(1x)9dx is 1/110.

What is 02dxx2+4 equal to?

  1. π2
  2. π4
  3. π8
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : π8

Definite Integrals Question 7 Detailed Solution

Download Solution PDF

Concept:

dxx2+a2=1atan1(xa)+c

Calculation:

Let I = 02dxx2+4

02dxx2+22

=[12tan1(x2)]02

=[12tan1112tan10]

=12×π40

π8

02πsin2xabcosxdx is equal to ?

  1. 6π 
  2. 4π 
  3. 2π 
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Definite Integrals Question 8 Detailed Solution

Download Solution PDF

Concept:

abf(x)dx=abf(a+bx)dx

Calculation: 

Let I = 02πsin2xabcosxdx         ----(1)

Using property f(a + b – x),

I = 02πsin2(2πx)abcos(2πx)dx   

As we know,  sin (2π - x) = - sin x and cos (2π - x) = cos x

I = 02πsin2xabcosxdx         ----(2)       

I = -I

2I = 0

∴ I = 0

Evaluate 14x4dx

  1. 23
  2. 43
  3. 13
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : 43

Definite Integrals Question 9 Detailed Solution

Download Solution PDF

Concept:

xndx=xn+1n+1+c

Calculation: 

I = 14x4dx

14x4dx

[4x33]1

43[1x3]1

43[111]

43[01]

43

The value of the integral 0π/2sinxsinx+cosxdx is

  1. 0
  2. π4
  3. π2
  4. π4

Answer (Detailed Solution Below)

Option 4 : π4

Definite Integrals Question 10 Detailed Solution

Download Solution PDF

Concept:

abf(x)dx=abf(a+bx)dx

 

Calculations:

Consider, I = 0π/2sinxsinx+cosxdx             ....(1)

I = 0π/2sin(π2x)sin(π2x)+cos(π2x)dx

I = 0π/2cosxcosx+sinxdx                           ....(2)

Adding (1) and (2), we have

2I = 0π/2cosx+sinxcosx+sinxdx

2I = 0π/2dx

2I = [x]0π2

I = π4

Evaluate 1edxx2+lnx

  1. e
  2. (23)
  3. (32)
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2 (32)

Definite Integrals Question 11 Detailed Solution

Download Solution PDF

Concept:

d(lnx)dx=1x

 

Calculation:

Let I = 1edxx2+lnx

Let (2 + ln x) = t2

Differentiating with respect to x, we get

⇒ (0 + 1x)dx = 2tdt

⇒ 1xdx = 2tdt

x

1

e

t

2

3

 

Now,

I=232tdtt2=223tdtt=223dt=2[t]23=2(32)

0πsin6xcos5xdx is equal to ?

  1. 2π 
  2. π 
  3. 0
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : 0

Definite Integrals Question 12 Detailed Solution

Download Solution PDF

Concept:

 

abf(x)dx=abf(a+bx)dx

 

Calculation: 

Let I = 0πsin6xcos5xdx             .... (1)

Using property f(a + b – x),

I = 0πsin6(πx)cos5(πx)dx

As we know,  sin (π - x) = sin x and cos (π - x) = -cos x

I = -0πsin6xcos5xdx                .... (2)

I = -I

2I = 0

∴ I = 0

What is 21x|x|dx equal to?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 2 : -1

Definite Integrals Question 13 Detailed Solution

Download Solution PDF

Concept:

f(x) = |x| will be equal to 

  • x, if x > 0
  • -x, if x < 0
  • 0, if x = 0

∫ dx = x + C  (C is a constant)

∫ xn dx = xn+1/n+1 + C

Calculation:

Let, I=21x|x|dx

Using the above concept, as x ∈ (-2, -1)

⇒ I=21xxdx

⇒ I=121(1)dx

⇒ I=[x]21  

⇒ I = -[-1 - (-2)] 

∴  21x|x|dx = -1

112x+1(x2+x+1)2dx = 

  1. 13
  2. 13
  3. 23
  4. 23

Answer (Detailed Solution Below)

Option 3 : 23

Definite Integrals Question 14 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = xn+1n+1+ C ; n ≠ -1
  • 1xdx=lnx + C
  • ∫ edx = ex+ C


Calculation:

I = 2x+1(x2+x+1)2dx

Let x2 + x + 1 = t

⇒ (2x + 1) dx = dt

I = dtt2

I = t11

I = 1t

I = 1x2+x+1

Putting limits

I = [1x2+x+1]11

I = 112+1+1(1(1)2+(1)+1)

I = 113 = \boldsymbol23

π4π4cos(e3x)x4+x3+1=

  1. ¼
  2. 1
  3. 0
  4. ½

Answer (Detailed Solution Below)

Option 3 : 0

Definite Integrals Question 15 Detailed Solution

Download Solution PDF

Concept:

aaf(x)dx=0


Calculation:

We know, 

aaf(x)dx=0

Here, limit of integration is same (i.e., π/4)

π4π4cos(e3x)x4+x3+1=0

Hence, option (3) is correct.

Get Free Access Now
Hot Links: teen patti octro 3 patti rummy teen patti gold apk download teen patti rummy