Indefinite Integrals MCQ Quiz in मल्याळम - Objective Question with Answer for Indefinite Integrals - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 19, 2025
Latest Indefinite Integrals MCQ Objective Questions
Top Indefinite Integrals MCQ Objective Questions
Indefinite Integrals Question 1:
If (x) = ekx; then find the indefinite integral of f (x)?
Answer (Detailed Solution Below)
Indefinite Integrals Question 1 Detailed Solution
The correct answer is option '1'.
Concept:
Indefinite integral:
- An indefinite integral is the integration of a function without limits.
- Integration is the reverse process of differentiation.
- Integration is defined for a function f(x) and it helps in finding the area enclosed by the curve, with the reference to one of the coordinate axes.
Calculation:
Integration of ekx
Integrating f (x) = ekx with respect to dx.
\(\int{f(x)}dx=\int{e^{kx}}{dx}\)
\(=\frac{e^{kx}}{k}+c\)
where 'c' is the constant,
Indefinite Integrals Question 2:
The value of \(\mathop \smallint \limits_0^1 \left| {5x - 3} \right|dx\) is
Answer (Detailed Solution Below)
Indefinite Integrals Question 2 Detailed Solution
Concept:
For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.
Calculation:
Given:
\(\mathop \smallint \limits_0^1 \left| {5x - 3} \right|dx\)
f(x) = 5x - 3 = 0
x = 3/5
∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.
\(\mathop \smallint \limits_0^1 \left| {5x - 3} \right|dx = - \mathop \smallint \limits_0^{\frac{3}{5}} \left( {5x - 3} \right)dx + \mathop \smallint \limits_{\frac{3}{5}}^1 \left( {5x - 3} \right)dx\)
\( = \left( { - \frac{5}{2}{x^2} + 3x} \right)_0^{\frac{3}{5}} + \left( {\frac{{5{x^2}}}{2} - 3x} \right)_{\frac{3}{5}}^1\)
\( = \left( { - \frac{9}{{10}} + \frac{9}{5}} \right) + \left[ {\left( {\frac{5}{2} - 3} \right) - \left( {\frac{9}{{10}} - \frac{9}{5}} \right)} \right]\)
\( = \frac{9}{{10}} + \left( {\frac{{ - 1}}{2} + \frac{9}{{10}}} \right) = \frac{{13}}{{10}}\)
Indefinite Integrals Question 3:
The value of \(\mathop \smallint \limits_0^1 \left| {5x - 3} \right|dx\) is
Answer (Detailed Solution Below)
Indefinite Integrals Question 3 Detailed Solution
Concept:
For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.
Calculation:
Given:
\(\mathop \smallint \limits_0^1 \left| {5x - 3} \right|dx\)
f(x) = 5x - 3 = 0
x = 3/5
∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.
\(\mathop \smallint \limits_0^1 \left| {5x - 3} \right|dx = - \mathop \smallint \limits_0^{\frac{3}{5}} \left( {5x - 3} \right)dx + \mathop \smallint \limits_{\frac{3}{5}}^1 \left( {5x - 3} \right)dx\)
\( = \left( { - \frac{5}{2}{x^2} + 3x} \right)_0^{\frac{3}{5}} + \left( {\frac{{5{x^2}}}{2} - 3x} \right)_{\frac{3}{5}}^1\)
\( = \left( { - \frac{9}{{10}} + \frac{9}{5}} \right) + \left[ {\left( {\frac{5}{2} - 3} \right) - \left( {\frac{9}{{10}} - \frac{9}{5}} \right)} \right]\)
\( = \frac{9}{{10}} + \left( {\frac{{ - 1}}{2} + \frac{9}{{10}}} \right) = \frac{{13}}{{10}}\)
Indefinite Integrals Question 4:
\(\smallint {e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx\;\) is equal to
Answer (Detailed Solution Below)
Indefinite Integrals Question 4 Detailed Solution
Let,
\(I = \smallint {e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx\)
\( = \smallint {e^x}f\left( x \right)dx + \smallint {e^x}f'\left( x \right)dx+C\)
By solving through integration by parts, we get
\( = \left\{ {{e^x}f\left( x \right) - \smallint f'\left( x \right){e^x}dx} \right\} + \smallint {e^x}f'\left( x \right)dx +C\)
\( = f\left( x \right).{e^x} +C\)
where C is constant
Indefinite Integrals Question 5:
To evaluate \(\displaystyle\int{\frac{dx}{(x-1)\sqrt{-x^2+3x-2}}}\) one of the most suitable substitution could be
Answer (Detailed Solution Below)
Indefinite Integrals Question 5 Detailed Solution
\(-{ x }^{ 2 }+3x-2=-{ x }^{ 2 }+2x+x-2=-x\left( x-2 \right) +1\left( x-2 \right) =\left( 1-x \right) \left( x-2 \right)\)
has real roots \(1\) and \(2\)
So from case III: \(\sqrt { -{ x }^{ 2 }+3x-2 } =u(1-x)\) or \(u(x-2)\)
Indefinite Integrals Question 6:
Evaluate \(\int\) sin \(\sqrt x/ \sqrt x\) dx
Answer (Detailed Solution Below)
Indefinite Integrals Question 6 Detailed Solution
Given
We need to evaluate the integral
Formula Used
using the Substitution method for integration.
Calculation:
∫ sin \(√ x/ √ x\) dx
⇒ Put √x = t
⇒ \(\frac{1 }{2 √ x} dx \) = dt
⇒ \(\frac{1 }{√ x} dx = 2dt\)
\(∫\) sin \(√ x/ √ x\) dx = 2 ∫ sin t dt = -2 cost + c = -2 cos(√x) + c
Hence, The Correct Answer is Option 3.
Indefinite Integrals Question 7:
\(\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\) is not true, if n is equal to
Answer (Detailed Solution Below)
Indefinite Integrals Question 7 Detailed Solution
Explanation:
\(\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\) is not true for n = -1
because for n = -1
\(\int x^{n} d x=\int x^{-1} d x\) = \(\int {1\over x}dx\) = log |x| + c
(5) is correct
Indefinite Integrals Question 8:
The integral \(\int {\frac{{dx}}{{\sqrt {2x + 5} - \sqrt {2x + 3} }}} \) is equal to
(where C is a constant of integration)
Answer (Detailed Solution Below)
Indefinite Integrals Question 8 Detailed Solution
Explanation:
Let I = \(\int {\frac{{dx}}{{\sqrt {2x + 5} - \sqrt {2x + 3} }}} \)
⇒ I = \(\int {\frac{{dx}}{{\sqrt {2x + 3+2} - \sqrt {2x + 3} }}} \)
Let 2x + 3 = t ⇒ 2 dx = dt
dx = \(\frac{dt}{2}\)
⇒ I = \(\int {\frac{{dt}}{{2(\sqrt {t+2} - \sqrt {t} )}}} \)
⇒ l= \(\frac{1}{2}\int {\frac{{dt}}{{\sqrt {t+2} - \sqrt {t}}}} \)
⇒ I = \(\frac{1}{2}\int {\frac{{(\sqrt {t+2}+\sqrt t)dt}}{{(\sqrt {t+2} - \sqrt {t})(\sqrt{t+2} +\sqrt t)}}} \)
⇒ I = \(\frac{1}{2}\int {\frac{{(\sqrt {t+2}+\sqrt t)dt}}{t+2-t} }\)
⇒ I = \(\frac{1}{2}\int {\frac{{(\sqrt {t+2}+\sqrt t)dt}}{2} }\)
⇒ I = \(\frac{1}{4}\int {{(\sqrt {t+2}+\sqrt t)dt}}\)
⇒ I = \(\frac{1}{4}\int {{(\sqrt {t+2})dt +\frac{1}{4}\int\sqrt tdt}}\)
⇒ I = \(\frac{1}{4}[\frac{(t+2)^{\frac{1}{2}+1}}{(\frac{1}{2}+1)}]\) + \(\frac{1}{4}[\frac{(t)^{\frac{1}{2}+1}}{(\frac{1}{2}+1)}]\) +C
⇒ I = \(\frac{1}{4}[\frac{(t+2)^\frac{3}{2}}{\frac{3}{2}}]\) + \(\frac{1}{4}[\frac{t^\frac{3}{2}}{\frac{3}{2}}]\) + C
⇒ I = \(\frac{1}{4}\times\frac{2}{3}\) \([(t+2)^{\frac{3}{2}}]\) + \(\frac{1}{4}\times\frac{2}{3}\)\([t^{\frac{3}{2}}]\) +C
⇒ I = \(\frac{1}{6}\) \([(t+2)^{\frac{3}{2}}]\) + \(\frac{1}{6}\) \([t^{\frac{3}{2}}]\) +C
⇒ I= \(\frac{1}{6}\) [\((t+2)^{\frac{3}{2}}+t^{\frac{3}{2}}\) ]+C
Substitute t = 2x + 3 in the above equation, we have
⇒ I = \(\frac{1}{6}\) [\((2x+3+2)^{\frac{3}{2}}+(2x+3)^{\frac{3}{2}}\) ] +C
⇒ I = \(\frac{1}{6}\)[ \((2x+5)^{\frac{3}{2}}+(2x+3)^{\frac{3}{2}}\) ] +C
⇒ \(\int {\frac{{dx}}{{\sqrt {2x + 5} - \sqrt {2x + 3} }}} \) = \(\frac{1}{6}\) [\((2x+5)^{\frac{3}{2}}+(2x+3)^{\frac{3}{2}}\)] +C
Hence, the correct answer is option (3).
Indefinite Integrals Question 9:
Let f:[0, 1] → R be a continuous function. Suppose
\(\mathop \smallint \limits_0^1 \left[ {\left( {1 + f\left( x \right)} \right)x + \mathop \smallint \limits_0^x f\left( t \right)dt} \right]dx = 1\)
Then value of \(\mathop \smallint \limits_0^1 f\left( x \right)dx\) is
Answer (Detailed Solution Below)
Indefinite Integrals Question 9 Detailed Solution
Given that,
\(\mathop \smallint \limits_0^1 \left[ {\left( {1 + f\left( x \right)} \right)x + \mathop \smallint \limits_0^x f\left( t \right)dt} \right]dx = 1\) ----(1)
We know that,
\(\mathop \smallint \limits_0^x f\left( t \right)dt = {\left[ {\smallint f\left( x \right)dx} \right]_{x = x}} - {\left[ {\smallint f\left( x \right)dx} \right]_{x = 0}}\)
\( = \smallint f\left( x \right)dx - {\left[ {\smallint f\left( x \right)dx} \right]_{x = 0}}\) ----(2)
\(\mathop \smallint \limits_0^1 xf\left( x \right)dx = \left[ {x\smallint f\left( x \right)dx} \right]_0^1 - \mathop \smallint \limits_0^1 \left[ {\smallint f\left( x \right)dx} \right]dx\) ----(3)
Now, equation (1) can be written as
\(\mathop \smallint \limits_0^1 x\;dx + \mathop \smallint \limits_0^1 xf\left( x \right)dx + \mathop \smallint \limits_0^1 \left( {\mathop \smallint \limits_0^x f\left( t \right)dt} \right)dx = 1\)
\( \Rightarrow \left[ {\frac{{{x^2}}}{2}} \right]_0^1 + \mathop \smallint \limits_0^1 x\;f\left( x \right)dx + \mathop \smallint \limits_0^1 \left( {\mathop \smallint \limits_0^x f\left( t \right)dt} \right)dx = 1\)
\( \Rightarrow \mathop \smallint \limits_0^1 xf\left( x \right)dx + \mathop \smallint \limits_0^1 \left( {\mathop \smallint \limits_0^x f\left( t \right)dt} \right)dx = \frac{1}{2}\)
By substituting equation (2) and (3) in the above equation
\( \Rightarrow \left[ {x\smallint f\left( x \right)dx} \right]_0^1 - \mathop \smallint \limits_0^1 \left[ {\smallint f\left( x \right)dx} \right]dx + \mathop \smallint \limits_0^1 \left( {\smallint f\left( x \right)dx} \right)dx - \mathop \smallint \limits_0^1 {\left[ {\smallint f\left( x \right)dx} \right]_{x = 0}}dx = \frac{1}{2}\)
\( \Rightarrow \left[ {x\smallint f\left( x \right)dx} \right]_0^1 - \mathop \smallint \limits_0^1 {\left[ {\smallint f\left( x \right)dx} \right]_{x = 0}}dx = \frac{1}{2}\)
\(\Rightarrow {\left[ {\smallint f\left( x \right)dx} \right]_{x = 1}} - {\left[ {\smallint f\left( x \right)dx} \right]_{x = 0}} = \frac{1}{2}\)
\( \Rightarrow \mathop \smallint \limits_0^1 f\left( x \right) = dx = \frac{1}{2}\)
Indefinite Integrals Question 10:
\(\smallint \frac{{2x + 3}}{{\sqrt {{x^2} + x + 1} }}dx\) is equal to