Multiple Integrals MCQ Quiz in मल्याळम - Objective Question with Answer for Multiple Integrals - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 19, 2025

നേടുക Multiple Integrals ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Multiple Integrals MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Multiple Integrals MCQ Objective Questions

Top Multiple Integrals MCQ Objective Questions

Multiple Integrals Question 1:

The area of the region bounded by y = 8 and y = |x2 - 1|, is

  1. 50/3
  2. 100/3
  3. 110/3
  4. 52/3

Answer (Detailed Solution Below)

Option 2 : 100/3

Multiple Integrals Question 1 Detailed Solution

15.11.2018.0141

Area = 2 (Area in first quadrant)

=2[01x2+18dydx+13x218dydx] 

=2[01(7+x2)dx+13(9x2)dx] 

=2[[7x+x33]01+[9xx33]13] 

=2[7+13+9(2)13(26)] 

=2[25253]=1003 

Multiple Integrals Question 2:

The surface integral sF.ndS over the surface S of the sphere x2 + y2 + z2 = 9, where F = (x + y)i + (x + z) j + (y + z) k and n is the unit outward surface normal, yields ________.

Answer (Detailed Solution Below) 225 - 227

Multiple Integrals Question 2 Detailed Solution

Concept:

Gauss divergence theorem

SFnds=SdivFdv 

Calculation:

SFnds=SdivFdv

=S[(x+y)i^+(x+z)j^+(y+z)k^]dv

=S(1+0+1)dv

=2dv=2V

V=43π(3)3=36π

2 × 36 π = 72 π = 226.19

Multiple Integrals Question 3:

The following surface integral is to be evaluated over a sphere for the given steady velocity vector field, F = xi + yj + zk defined with respect to a Cartesian coordinate system having i, j, and k as unit base vectors.

s14(F.n)dA , Where S is the sphere, x2 + y2 + z2 = 1 and n is the outward unit normal vector to the sphere. The value of the surface integral is

  1. π
  2. 3π4

Answer (Detailed Solution Below)

Option 1 : π

Multiple Integrals Question 3 Detailed Solution

Concept:

Gauss divergence theorem:

It states that the surface integral of the normal component of a vector function F taken over a closed surface ‘S’ is equal to the volume integral of the divergence of that vector function F taken over a volume enclosed by the closed surface ‘S’.

SF.n^ds=V.Fdv

Calculation:

Given:

F = xi + yj + zk

.F=3

14SF.n^ds=14V.Fdv

14SF.n^ds=14V.Fdv=14V3.dv=34Vdv

14SF.n^ds=34×volumeofthesphere

14SF.n^ds=34×43×π×(1)3=π(radius=1)

Stokes theorem:

It states that the line integral of a vector field F around any closed surface C is equal to the surface integral of the normal component of the curl of vector F over an unclosed surface ‘S’.

CF.dr=Scurl F.n^ds

Green's theorem:

(Mdx+Ndy)=(NxMy)dxdy

Multiple Integrals Question 4:

Evaluate the integral

102xx2xy dy dx

  1. ¾
  2. 3/2
  3. 3/8
  4. 3/16

Answer (Detailed Solution Below)

Option 3 : 3/8

Multiple Integrals Question 4 Detailed Solution

Concept:

In multiple Integral Involving variables as limits, first draw the curves

y = x2

y = 2 - x

F1 Engineering Mathematics Subject Test  Rishi 3 october Nita&Madhu.docx 3

Calculation:

10x(y=2xy=x2y dy)dx

10x[y22]x22xdx

1210x[(2x)2(x2)2]dx

1210x(4+x24xx4)dx

1210(x5+x34x2+4x)dx

12[(x66)+(x44)4(x33)+4(x22)]01

12[16(10)+14(10)43(10)+2(10)]

11[16+1443+2]

12[2+316+2412]

12[912]=924=38

Multiple Integrals Question 5:

The value of 010x(x2+y2)dA, where dA indicate small area in xy-plane, is

  1. 12 sq. units
  2. 13 sq. units
  3. 12 sq. units
  4. 13 sq. units

Answer (Detailed Solution Below)

Option 2 : 13 sq. units

Multiple Integrals Question 5 Detailed Solution

Concept:

0m0xf(x,y)dA

Since the inside limit is in terms of x, therefore we have to integrate first the 'y' terms and convert whole expression in terms of x.

Calculation:

Given:

010x(x2+y2)dA

01[0x(x2+y2)dy]dx

01(x2[y]0x+[y33]0x)dx

01(x3+x33)dx

01(4x33)dx

(4x412)01

13

Multiple Integrals Question 6:

The solution of 1a1bdxdyxy is

  1. In(ab)
  2. In(a/b)
  3. In(a) + In(b)
  4. In(a) In(b)

Answer (Detailed Solution Below)

Option 4 : In(a) In(b)

Multiple Integrals Question 6 Detailed Solution

Concept:

Evaluation of Double integrals: It doesn’t matter which variable we integrate with respect to first, we will get the same answer regardless of the order of integration.

dxx=ln(x)+c

Calculation:

Given:

I = 1a1bdxdyxy

1adxx×1bdyy

= | ln (x) |1 to a × | ln (y) |1 to b 

= [ln (a) - ln (1)] × [ln(b) - ln(1)]

I = ln (a) ln (b) 

Multiple Integrals Question 7:

f(x, y) is a continuous function defined over (x, y) ∈ [0, 1] × [0, 1]. Given the two constraints, x > y2 and y > x2, the area under f(x, y) is

  1. y=0y=1x=y2x=yf(x,y)dxdy
  2. y=x2y=1x=y2x=1f(x,y)dxdy
  3. y=0y=1x=0x=1f(x,y)dxdy
  4. y=0y=xx=0x=yf(x,y)dxdy

Answer (Detailed Solution Below)

Option 1 : y=0y=1x=y2x=yf(x,y)dxdy

Multiple Integrals Question 7 Detailed Solution

The region for the given constraint x > y2 and y > x2 is drawn as:

F1 S.B 11.9.20 Pallavi D 1

Limit of y: y = 0 to y = 1

Limit of x:

x=y2tox2=y

Or x = y to x = √y

Now, the volume under f(x, y) will be:

V=y=0y=1x=y2x=yf(x,y)dxdy

Multiple Integrals Question 8:

If 03x29f(x,y)dydx=pqrsf(x,y)dxdy, then the values of, p, q, r and s are

  1. p = 0, q = -9, r = 0, s=y
  2. p = 0, q = 1, r=y, s = 3
  3. p = 0, q = 9, r = 0, s=y
  4. p = 0, q = 9, r = 0, s=y

Answer (Detailed Solution Below)

Option 4 : p = 0, q = 9, r = 0, s=y

Multiple Integrals Question 8 Detailed Solution

The given limits are:

x = 0 to 3

y = x2 to 9

The given limits are corresponding to a vertical strip ab as shown below.

F1 Uday Madhu 17.07.20 D1

Now, to change the order of integration consider the horizontal strip cd as shown.

Now, the limits are:

x=0toy

y = 0 to 9

Now, the integration becomes

y=09x=0yf(x,y)dxdy

By comparing the above integral with the given integral, we get

p = 0, q = 9, r = 0, s=y

Multiple Integrals Question 9:

A definite double integral is given below, then, evaluation of the double integral over the region R will be __

I=x=0x=ry=0r2x2(yr2)dx.dy

Where R is the region on X - Y plane for the function given as, y=r2x2 and r ∈ [0, 5] 

Answer (Detailed Solution Below) 1250

Multiple Integrals Question 9 Detailed Solution

Concept:

Let’s change the Cartesian coordinate limits into cylindrical planar polar coordinate,

⇒ x = r cosθ; y = r sinθ

Replace dx.dy = rdθ .dr

Calculation:

Given:

y=r2x2      ---(1)

From the graph of equation (1)

F11 Yerra 29-5-2021 Swati D9

θ → 0 to π; r → 0 to 5

Then the limit of the double integration will be,

I=050π(r×sinθ×r2)rdθ.dr

I=050π(r4sinθ)dθ.dr

I=0π(555×sinθ)dθ

⇒ I = - [cos π – cos 0] × 625

⇒ I = 1250

Multiple Integrals Question 10:

Value of 0π20πcos(x+y)dxdy is-

  1. -2
  2. 2
  3. 0
  4. 4

Answer (Detailed Solution Below)

Option 1 : -2

Multiple Integrals Question 10 Detailed Solution

Hint:

To Find 0π20πcos(x+y)dxdy, the limits of outermost integration is constant. so first integrate w.r.to x

When integrating with respect to x, we must think of y as a constant.

We know that:

sin(π+θ)=sinθ and

sin(θ)=sinθ

Calculation:

Consider, I = 0π20πcos(x+y)dxdy

To Find:

0π20πcos(x+y)dxdy
The limits of outermost integration are constant so first  integrate w.r.t x 

When integrating with respect to x, we must think of y as a constant.

=0π2[sin(x+y)]0πdy

=0π2(sin(π+y)sin(0+y))dy

We know that:

sin(π+θ)=sinθ and sin(θ)=sinθ

=0π2(sinysiny)dy

=0π2(2siny)dy

=20π2(siny)dy

= 2 [cos y]0π/2

= 2 [cos 90° - cos 0°]

= -2

Get Free Access Now
Hot Links: teen patti real cash apk teen patti master game teen patti joy teen patti gold old version