Differentiability MCQ Quiz in मल्याळम - Objective Question with Answer for Differentiability - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 9, 2025

നേടുക Differentiability ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Differentiability MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Differentiability MCQ Objective Questions

Top Differentiability MCQ Objective Questions

Differentiability Question 1:

Consider the functions

I. e-x

II. x2 – sin x

III. \(\sqrt {{x^3} + 1} \)

Which of the above functions is/are increasing everywhere in [0, 1]?

  1. III only
  2. II only
  3. II and III only
  4. I and III only

Answer (Detailed Solution Below)

Option 1 : III only

Differentiability Question 1 Detailed Solution

Concept:

A function f(x) is said to be increasing in the given interval if it’s first order differential \(f'\left( x \right) \ge 0\) holds for every point in the given interval.

Calculation:

Function I:

\(f\left( x \right) = {e^{ - x}}\therefore f'\left( x \right) = \; - {e^{ - x}}\)

\(\because {f'}\left( 0 \right) = - 1 < 0\)

Therefore, the function is non increasing.        

Function II:

\(f\left( x \right) = \;{x^2} - \sin x,\;f'\left( x \right) = 2x - \cos x\)

\(f'\left( 0 \right) = \;0 - \cos 0 = - 1 < 0\)

Therefore, this function is also non increasing.

Furthermore, since cosine function is periodic function, it cannot be strictly increasing in the given range

Function III:

\(f\left( x \right) = \sqrt {{x^3} + 1} \)

\({\rm{f'}}\left( {\rm{x}} \right) = \frac{{3{x^2}}}{{2\sqrt {{x^3} + 1} }}\)

\(f'\left( 0 \right) = 0,\;f'\left( 1 \right) > 0\)

Therefore, the function is increasing in the given interval.

Therefore \(f\left( x \right) = \sqrt {{x^3} + 1} \) function is the only increasing everywhere in [0, 1]

Hence Option(1) is the correct answer.

Differentiability Question 2:

The mean value \(\rm c\) for the function \(\rm f(x) = log x \ and\ g\left( x \right) = \log \left( {\frac{1}{X}} \right)\) in \(\rm [1, 2]\) is

  1. \(\rm 1\) only

  2. \(\rm 1.5\) only

  3. Any value between \(\rm 1 \ and \ 2\)

  4. \(\rm 1.25\)

Answer (Detailed Solution Below)

Option 3 :

Any value between \(\rm 1 \ and \ 2\)

Differentiability Question 2 Detailed Solution

Both the functions are continuous in \(\rm [1, 2]\) and differentiable in \(\rm (1, 2)\).

By Cauchy's Mean Value theorem we should have \(\rm \frac {f'(c)}{g'(c)}=\frac {f(b)-f(a)}{g(b)-g(a)}\)

\(\rm \frac {f'(c)}{g'(c)}=\frac {f(2)-f(1)}{g(2)-g(1)}\)

\(\rm f(x) = log x \ and\ g\left( x \right) = \log \left( {\frac{1}{X}} \right)\)

\(\rm \begin{array}{l} f'\left( x \right) = \frac{1}{x},g'\left( x \right) = \frac{{ - 1}}{x}\\ \rm \frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( 2 \right) - f\left( 1 \right)}}{{f\left( 2 \right) - g\left( 1 \right)}}\\ \rm \frac{{\frac{1}{c}}}{{\frac{{ - 1}}{c}}} = \frac{{log2 - 0}}{{ - log2 - 0}} \end{array}\)

Therefore \(\rm c\) can be any value between \(\rm 1 \ and \ 2\)

Important Points

Since LHS = RHS = -1 This is true for any value of c.

But in Question specific range is mentioned 9i.e. [1,2] ). So "c" can be any value in 1 & 2. 

Differentiability Question 3:

If f(x) = x2  +  4x + 3, then f'(1)

  1. 4
  2. 6
  3. 8
  4. 10

Answer (Detailed Solution Below)

Option 2 : 6

Differentiability Question 3 Detailed Solution

Concept:

Formula used:

\(\rm f'\left( x \right) = \;\frac{{d\;f\left( x \right)}}{{dx}}\)

Calculation:

f(x) = x2  +  4x + 3

Differentiate f(x) with respect to 'x'.

\(\rm f'\left( x \right) = \;\frac{{d\;f\left( x \right)}}{{dx}}\)

⇒ f'(x) = 2x + 4

Put x = 1,

So, f'(1) = 2 × 1 + 4 = 6

∴The value of f'(1) is 6.

Differentiability Question 4:

As x increased from – 3 to 3, the function

\(f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}}\)

  1. monotonically increases
  2. monotonically decreases
  3. increases to a maximum value and then decreases
  4. decrease to a minimum value and then increases

Answer (Detailed Solution Below)

Option 1 : monotonically increases

Differentiability Question 4 Detailed Solution

Concept:

For a function to be monotonically increasing over an interval, its slope must always be positive in the interval i.e.

f'(x) > 0

For a function to be monotonically decreasing over an interval, its slope must always be negative over that interval. i.e.

f'(x) < 0

Application:

Given:

\(f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}}\)

The slope of the function will be:

\(f'\left( x \right) = \frac{{\left( {1 + {e^x}} \right)\left( {{e^x}} \right) - {e^x}\left( {{e^x}} \right)}}{{{{\left( {1 + {e^x}} \right)}^2}}}\)

\(f'\left( x \right) = \frac{{{e^x} + {e^{2x}} - {e^x}}}{{\left( {1 + {e^x}} \right)}^2}\)

\(f'\left( x \right) = \frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}\)

In the given interval of -3 to 3, we observe that the slope is always positive.

The given function f(x) is monotonically increasing in the interval -3 to 3

Differentiability Question 5:

If f(0) = 4 and f'(x) = \(\frac{3}{{{x^2} + 2}},\) the lower bound of f(2) estimated by mean value theorem is

  1. 0
  2. 7
  3. 5
  4. 12

Answer (Detailed Solution Below)

Option 3 : 5

Differentiability Question 5 Detailed Solution

Explanation

From mean value theorem,

we know that 

  \(\frac{{{\rm{f}}\left( b \right){\rm{\;}}-{\rm{\;f}}\left(a \right)}}{{b{\rm{\;}}-{\rm{\;}}a}} =f'(x)\)

 Here, a = 0, b = 2

 and \(f'(x) =\frac{3}{{{x^2} + 2}}\)

 Substituting the values 

\(\frac{{{\rm{f}}\left( 2 \right){\rm{\;}}-{\rm{\;f}}\left( 0 \right)}}{{2{\rm{\;}}-{\rm{\;}}0}}\) = f'(x), x ϵ[0, 2]

 f(2) = 2 × f'(x) + f(0) 

f(2) = 2 × \(\left( {\frac{3}{{{x^2}\; + \;2}}} \right)\) + 4

lower bound of f(2) = \(\frac{6}{{2^2\; + \;2}} + 4\)

 = 1 + 4 = 5

Differentiability Question 6:

Comprehension:

Directions: Consider the curve x = 1 - 3t2, y = t - 3t3. A tangent at point (1 - 3t2, t - 3t3) is inclined at an angle θ to the positive X-axis and another tangent at point P(-2, 2) cuts the curve again at Q.

The point Q will be

  1. (1, -2)
  2. \(\left(\frac{-1}{3},\frac{-2}{3}\right)\)
  3. (-2, 1)
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Differentiability Question 6 Detailed Solution

Concept:

The equation of the tangent at any point (a, b) of the curve is (y - b) = m (x - a)

where m is slope of tangent that is m = dy/dx at (a,b)

Any point on the line satisfies the equation of the line.

Calculation:

Given, x = 1 - 3t2, y = t - 3t3

⇒ dx/dt = -3(2t), dy/dt = 1 - 3(3t2)

⇒ dx/dt = -6t, dy/dt = 1 - 9t2

⇒ \({dy \over dx} = {{dy \over dt} \over { dx \over dt}}\)\( { 1 \ - \ 9t^2 \over -6t}\)

⇒ \({dy \over dx} = { 9t^2 - 1 \over 6t}\)

At point (x, y) = (1 - 3t2, t - 3t3) = (-2, 2)

⇒ 1 - 3t= -2, t - 3t= 2

⇒ t = - 1 

⇒  slope of tangent at (- 2, 2)

⇒ \({dy \over dx} = { 9t^2 - 1 \over 6t}\) at (- 2, 2)

⇒ [9(-1)2- 1]/6(-1)

⇒ m = -8/6 = - 4/3

So, The equation of tangent at point (-2, 2) 

(y - 2) = (-4/3) (x - (-2))

⇒ 3(y - 2) = - 4(x + 2)

⇒ 3y - 6 = - 4x - 8

⇒ 4x + 3y + 2 = 0      ___(i)

Since point Q lies on this tangent and also lies on the curve.

So, Q = (1 - 3t2,t - 3t3) satisfies equation (i).

that is, 4(1 - 3t2) + 3(t - 3t3) + 2 = 0

⇒ 4 - 12t+ 3t - 9t3 + 2 = 0

⇒ 6 - 12t+ 3t - 9t3 = 0

⇒  9t+ 12t- 3t - 6 = 0

⇒  (t + 1) (9t2 + 3t - 6) = 0

⇒ (t + 1) (9t - 6) (t + 1) = 0

when t = - 1 , the point P is there,

So t = -6/9 = -2/3

⇒ Q = [1 - 3(-2/3)2, -2/3 - 3(-2/3)3]

⇒ Q = [1 - 4/3, -2/3 + (8/9)]

⇒ Q = (- 1/3, 2/9)

∴ The correct answer is option (4). 

Differentiability Question 7:

If x = uv and \({\rm{y}} = \frac{{{\rm{u}} + {\rm{v}}}}{{{\rm{u}} - {\rm{v}}}}\), then \(\frac{{{\rm{\delta }}\left( {{\rm{u}},{\rm{\;v}}} \right)}}{{{\rm{\delta }}\left( {{\rm{x}},{\rm{\;y}}} \right)}}\) is a function of f(u,v). Find the value of f(2,1).

Answer (Detailed Solution Below) 0.125

Differentiability Question 7 Detailed Solution

Concept:

Jacobian of (y1, y2, y3) w.r.t. (x1, x2, x3) is equal to

\(\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial {y_1}}}{{\partial {x_1}}}}&{\frac{{\partial {y_1}}}{{\partial {x_2}}}}&{\frac{{\partial {y_1}}}{{\partial {x_3}}}}\\ {\frac{{\partial {y_2}}}{{\partial {x_1}}}}&{\frac{{\partial {y_2}}}{{\partial {x_2}}}}&{\frac{{\partial {y_2}}}{{\partial {x_3}}}}\\ {\frac{{\partial {y_3}}}{{\partial {x_1}}}}&{\frac{{\partial {y_3}}}{{\partial {x_2}}}}&{\frac{{\partial {y_3}}}{{\partial {x_3}}}} \end{array}} \right|\)

\(\frac{{\partial \left( {{x_1},{x_2},\;{x_3}} \right)}}{{\partial \left( {{y_1},\;{y_2},\;{y_3}} \right)}} =\frac{1}{\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} }\)

Calculation:

Given:

x = uv and \({\rm{y}} = \frac{{{\rm{u}} + {\rm{v}}}}{{{\rm{u}} - {\rm{v}}}}\)

\(\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial {\rm{x}}}}{{\partial {\rm{u}}}}}&{\frac{{\partial {\rm{x}}}}{{\partial {\rm{v}}}}}\\ {\frac{{\partial {\rm{y}}}}{{\partial {\rm{u}}}}}&{\frac{{\partial {\rm{y}}}}{{\partial {\rm{v}}}}} \end{array}} \right| \)

\(\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}} =\left| {\begin{array}{*{20}{c}} {\rm{v}}&{\rm{u}}\\ { - \frac{{2{\rm{v}}}}{{{{\left( {{\rm{u}} - {\rm{v}}} \right)}^2}}}}&{\frac{{2{\rm{u}}}}{{{{\left( {{\rm{u}} - {\rm{v}}} \right)}^2}}}} \end{array}} \right|\)

\(\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}} = \frac{{4{\rm{uv}}}}{{{{\left( {{\rm{u}} - {\rm{v}}} \right)}^2}}}\)

We know that

\(\frac{{\partial \left( {{x_1},{x_2},\;{x_3}} \right)}}{{\partial \left( {{y_1},\;{y_2},\;{y_3}} \right)}} =\frac{1}{\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} }\)

\(\frac{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}}{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}} = \frac{{{\rm{1}}}}{{{{\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}}}}}}\)

\(\therefore \frac{{\partial \left( {{\bf{u}},{\bf{v}}} \right)}}{{\partial \left( {{\bf{x}},{\bf{y}}} \right)}} = \frac{{{{\left( {{\bf{u}} - {\bf{v}}} \right)}^2}}}{{4{\bf{uv}}}}=f(u,v)\)

\(f(2,1)=\frac{{{{\left( {{\bf{2}} - {\bf{1}}} \right)}^2}}}{{4{{\;\times \;2\;\times\; 1}}}}=\frac{1}{8}=0.125\)

Differentiability Question 8:

If f and g are differentiable functions in (0, 1) satisfying f(0) = 2 = g(1), g(0) = 0 and f(1) = 6, then for some c ϵ (0, 1)

  1. 2f'(c) = g'(c)
  2. 2f'(c) = 3g'(c)
  3. f'(c) = g'(c)
  4. f'(c) = 2g'(c)

Answer (Detailed Solution Below)

Option 4 : f'(c) = 2g'(c)

Differentiability Question 8 Detailed Solution

Rolle’s mean value theorem:

Suppose f(x) is a function that satisfies all of the following

1. f(x) is continuous on the closed interval [a, b]

2. f(x) is differentiable on the closed interval (a, b)

3. f(a) = f(b)

Then there is a number c such that a < c < b and f'(c) = 0

Let h(x) = f(x) – 2g(x)

Given that f(x) and g(x) are continuous as well as differentiable

Hence h(x) is also continuous as well as differentiable.

h(0) = f(0) – 2g(0) = 2 – 2(0) = 2

h(1) = f(1) – 2g(1) = 6 – 2(2) = 2

h(0) = h(1)

hence h(x) satisfies all the conditions of Rolle’s theorem

Now, h'(c) = 0

⇒ f'(c) – 2g'(c) = 0

⇒ f'(c) = 2g'(c)

Differentiability Question 9:

A function f(x) is defined as follows:-

\(f(x)=\left\{\begin{matrix}3 (x^2+2)&\rm if\ x\le0\\\ 4x+6&\rm if\ x>0\end{matrix}\right.\)

Then f(x) is ______

  1. Neither continuous nor differentiable at x = 0
  2. Continuous but not differentiable at x = 0
  3. Not continuous but differentiable at x = 0
  4. Both continuous & differentiable at x = 0

Answer (Detailed Solution Below)

Option 2 : Continuous but not differentiable at x = 0

Differentiability Question 9 Detailed Solution

Concept:

Continuity of a function:

We say f(x) is continuous at x = c if

LHL = RHL = value of f(c)

i.e., \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{c}} \right)\)

Differentiability of a Function:

A function f(x) is differentiable at a point x = a, in its domain if its derivative is continuous at a.

This means that f'(a) must exist, or equivalently:

 \(\rm \displaystyle \lim_{x\to a^+}f'(x)=\lim_{x\to a^-}f'(x)=\lim_{x\to a}f'(x)=f'(a)\).

Calculation:-

To check the continuity,

\(\rm LHL=\displaystyle\lim_{x\rightarrow0}f(x)=\displaystyle\lim_{x\rightarrow0^-}3(x^2+2)=6\)

\(\rm RHL=\displaystyle\lim_{x\rightarrow0}f(x)=\displaystyle\lim_{x\rightarrow0^+}4x+6=6\)

∴ the function is continuous at x = 0

hence, the function can be differentiable or not differentiable.

To check the differentiability

LHD = \(\displaystyle\lim_{h\rightarrow0}\dfrac{f(0-h)-f(0)}{(0-h)}\)

\(=\displaystyle\lim_{h\rightarrow0}\dfrac{3(h^2+2)-6}{-h}\)

\(=\displaystyle\lim_{h\rightarrow0}\dfrac{3h^2+6-6}{-h}\)

= 0

RHD = \(\displaystyle\lim_{h\rightarrow0}\dfrac{f(0+h)-f(0)}{(0+h)}\)

\(=\displaystyle\lim_{h\rightarrow0}\dfrac{4h+6-6}{h}\)

= 4

∴ LHD ≠ RHD

Differentiability Question 10:

Let r = x2 + y - z and z3 -xy + yz + y3 = 1. Assume that x and y are independent variables. At (x, y, z) = (1, -1, 1), the value (correct to two decimal places) of \(\frac{{\partial {\rm{r}}}}{{\partial {\rm{x}}}}{\rm{\;}}\) is _________.

  1. 3
  2. 3.5
  3. 4
  4. 2.5

Answer (Detailed Solution Below)

Option 4 : 2.5

Differentiability Question 10 Detailed Solution

Concept:

If x and y are independent variables, then \(\frac{\partial y}{\partial x}=0\) and \(\frac{\partial x}{\partial y}=0\)

Calculation:

Given:

r = x2 + y - z     ----(1)

z3 - xy + yz + y3 = 1      ----(2)

Since y is an independent variables, derivative of ‘y’ w.r.t. ‘x’ is \(\frac{\partial y}{\partial x}=0\).

From equation (1):

Differentiate w.r.t to 'x'

\(\frac{{\partial r}}{{\partial x}} = 2x\;+\;\frac{\partial y}{\partial x}- \frac{{\partial z}}{{\partial x}}\)

\(\frac{{\partial r}}{{\partial x}} = 2x\;-\;\frac{{\partial z}}{{\partial x}}\;\;\;\;\left [ \because \frac{\partial y}{\partial x}=0 \right ]\)      ----(3)

From equation (2):

Differentiate w.r.t to 'x'

z3 – xy + yz + y3 = 1

Differentiate w.r.t x

\(∴3{z^2}\frac{{\partial z}}{{\partial x}} - y\;-\;x\frac{\partial y}{\partial x} + y\frac{{\partial z}}{{\partial x}\;}\;+\;z\frac{\partial y}{\partial x}\;+\;3y^2\frac{\partial y}{\partial x}= 0\)

\(∴3{z^2}\frac{{\partial z}}{{\partial x}}\;-\;y\;+\;y\frac{{\partial z}}{{\partial x}\;}= 0\;\;\;\left [ \because \frac{\partial y}{\partial x}=0 \right ]\)

\(∴ \left( {3{z^2} + y} \right)\frac{{\partial z}}{{\partial x}} = y\)

\(∴\frac{{\partial z}}{{\partial x}} = \frac{y}{{3{z^2} + y}}\;\;\)     ----(4)

Substitute (4) in (3)

\(\frac{{\partial r}}{{\partial x}} = 2x\;-\;\frac{{\partial z}}{{\partial x}}\;\;\;\;\)

\(\frac{{\partial r}}{{\partial x}} = 2x - \frac{y}{{3{z^2}\;+\;y}}\)

At, (1, -1, 1)

\({\left( {\frac{{\partial r}}{{\partial x}}} \right)_{\left( {1,\;- 1,\;1} \right)}} = 2\left(1 \right) - \frac{{ - 1}}{{3{{\left( 1 \right)}^2} + \left( { - 1} \right)}}\)

\(∴ 2 + \frac{1}{2}\)

∴ 2.5 is the required answer.

Get Free Access Now
Hot Links: teen patti lucky teen patti joy official teen patti 100 bonus