Differentiability MCQ Quiz in मल्याळम - Objective Question with Answer for Differentiability - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 9, 2025
Latest Differentiability MCQ Objective Questions
Top Differentiability MCQ Objective Questions
Differentiability Question 1:
Consider the functions
I. e-x
II. x2 – sin x
III. \(\sqrt {{x^3} + 1} \)
Which of the above functions is/are increasing everywhere in [0, 1]?Answer (Detailed Solution Below)
Differentiability Question 1 Detailed Solution
Concept:
A function f(x) is said to be increasing in the given interval if it’s first order differential \(f'\left( x \right) \ge 0\) holds for every point in the given interval.
Calculation:
Function I:
\(f\left( x \right) = {e^{ - x}}\therefore f'\left( x \right) = \; - {e^{ - x}}\)
\(\because {f'}\left( 0 \right) = - 1 < 0\)
Therefore, the function is non increasing.
Function II:
\(f\left( x \right) = \;{x^2} - \sin x,\;f'\left( x \right) = 2x - \cos x\)
\(f'\left( 0 \right) = \;0 - \cos 0 = - 1 < 0\)
Therefore, this function is also non increasing.
Furthermore, since cosine function is periodic function, it cannot be strictly increasing in the given range
Function III:
\(f\left( x \right) = \sqrt {{x^3} + 1} \)
\({\rm{f'}}\left( {\rm{x}} \right) = \frac{{3{x^2}}}{{2\sqrt {{x^3} + 1} }}\)
\(f'\left( 0 \right) = 0,\;f'\left( 1 \right) > 0\)
Therefore, the function is increasing in the given interval.
Therefore \(f\left( x \right) = \sqrt {{x^3} + 1} \) function is the only increasing everywhere in [0, 1]
Hence Option(1) is the correct answer.
Differentiability Question 2:
The mean value \(\rm c\) for the function \(\rm f(x) = log x \ and\ g\left( x \right) = \log \left( {\frac{1}{X}} \right)\) in \(\rm [1, 2]\) is
Answer (Detailed Solution Below)
Any value between \(\rm 1 \ and \ 2\)
Differentiability Question 2 Detailed Solution
Both the functions are continuous in \(\rm [1, 2]\) and differentiable in \(\rm (1, 2)\).
By Cauchy's Mean Value theorem we should have \(\rm \frac {f'(c)}{g'(c)}=\frac {f(b)-f(a)}{g(b)-g(a)}\)
\(\rm \frac {f'(c)}{g'(c)}=\frac {f(2)-f(1)}{g(2)-g(1)}\)
\(\rm f(x) = log x \ and\ g\left( x \right) = \log \left( {\frac{1}{X}} \right)\)
\(\rm \begin{array}{l} f'\left( x \right) = \frac{1}{x},g'\left( x \right) = \frac{{ - 1}}{x}\\ \rm \frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( 2 \right) - f\left( 1 \right)}}{{f\left( 2 \right) - g\left( 1 \right)}}\\ \rm \frac{{\frac{1}{c}}}{{\frac{{ - 1}}{c}}} = \frac{{log2 - 0}}{{ - log2 - 0}} \end{array}\)
Therefore \(\rm c\) can be any value between \(\rm 1 \ and \ 2\).
Important Points
Since LHS = RHS = -1 This is true for any value of c.
But in Question specific range is mentioned 9i.e. [1,2] ). So "c" can be any value in 1 & 2.
Differentiability Question 3:
If f(x) = x2 + 4x + 3, then f'(1)
Answer (Detailed Solution Below)
Differentiability Question 3 Detailed Solution
Concept:
Formula used:
\(\rm f'\left( x \right) = \;\frac{{d\;f\left( x \right)}}{{dx}}\)
Calculation:
f(x) = x2 + 4x + 3
Differentiate f(x) with respect to 'x'.
\(\rm f'\left( x \right) = \;\frac{{d\;f\left( x \right)}}{{dx}}\)
⇒ f'(x) = 2x + 4
Put x = 1,
So, f'(1) = 2 × 1 + 4 = 6
∴The value of f'(1) is 6.
Differentiability Question 4:
As x increased from – 3 to 3, the function
\(f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}}\)
Answer (Detailed Solution Below)
Differentiability Question 4 Detailed Solution
Concept:
For a function to be monotonically increasing over an interval, its slope must always be positive in the interval i.e.
f'(x) > 0
For a function to be monotonically decreasing over an interval, its slope must always be negative over that interval. i.e.
f'(x) < 0
Application:
Given:
\(f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}}\)
The slope of the function will be:
\(f'\left( x \right) = \frac{{\left( {1 + {e^x}} \right)\left( {{e^x}} \right) - {e^x}\left( {{e^x}} \right)}}{{{{\left( {1 + {e^x}} \right)}^2}}}\)
\(f'\left( x \right) = \frac{{{e^x} + {e^{2x}} - {e^x}}}{{\left( {1 + {e^x}} \right)}^2}\)
\(f'\left( x \right) = \frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}\)
In the given interval of -3 to 3, we observe that the slope is always positive.
∴ The given function f(x) is monotonically increasing in the interval -3 to 3
Differentiability Question 5:
If f(0) = 4 and f'(x) = \(\frac{3}{{{x^2} + 2}},\) the lower bound of f(2) estimated by mean value theorem is
Answer (Detailed Solution Below)
Differentiability Question 5 Detailed Solution
Explanation
From mean value theorem,
we know that
\(\frac{{{\rm{f}}\left( b \right){\rm{\;}}-{\rm{\;f}}\left(a \right)}}{{b{\rm{\;}}-{\rm{\;}}a}} =f'(x)\)
Here, a = 0, b = 2
and \(f'(x) =\frac{3}{{{x^2} + 2}}\)
Substituting the values
\(\frac{{{\rm{f}}\left( 2 \right){\rm{\;}}-{\rm{\;f}}\left( 0 \right)}}{{2{\rm{\;}}-{\rm{\;}}0}}\) = f'(x), x ϵ[0, 2]
f(2) = 2 × f'(x) + f(0)
f(2) = 2 × \(\left( {\frac{3}{{{x^2}\; + \;2}}} \right)\) + 4
lower bound of f(2) = \(\frac{6}{{2^2\; + \;2}} + 4\)
= 1 + 4 = 5Differentiability Question 6:
Comprehension:
The point Q will be
Answer (Detailed Solution Below)
Differentiability Question 6 Detailed Solution
Concept:
The equation of the tangent at any point (a, b) of the curve is (y - b) = m (x - a)
where m is slope of tangent that is m = dy/dx at (a,b)
Any point on the line satisfies the equation of the line.
Calculation:
Given, x = 1 - 3t2, y = t - 3t3
⇒ dx/dt = -3(2t), dy/dt = 1 - 3(3t2)
⇒ dx/dt = -6t, dy/dt = 1 - 9t2
⇒ \({dy \over dx} = {{dy \over dt} \over { dx \over dt}}\)= \( { 1 \ - \ 9t^2 \over -6t}\)
⇒ \({dy \over dx} = { 9t^2 - 1 \over 6t}\)
At point (x, y) = (1 - 3t2, t - 3t3) = (-2, 2)
⇒ 1 - 3t2 = -2, t - 3t3 = 2
⇒ t = - 1
⇒ slope of tangent at (- 2, 2)
⇒ \({dy \over dx} = { 9t^2 - 1 \over 6t}\) at (- 2, 2)
⇒ [9(-1)2- 1]/6(-1)
⇒ m = -8/6 = - 4/3
So, The equation of tangent at point (-2, 2)
(y - 2) = (-4/3) (x - (-2))
⇒ 3(y - 2) = - 4(x + 2)
⇒ 3y - 6 = - 4x - 8
⇒ 4x + 3y + 2 = 0 ___(i)
Since point Q lies on this tangent and also lies on the curve.
So, Q = (1 - 3t2,t - 3t3) satisfies equation (i).
that is, 4(1 - 3t2) + 3(t - 3t3) + 2 = 0
⇒ 4 - 12t2 + 3t - 9t3 + 2 = 0
⇒ 6 - 12t2 + 3t - 9t3 = 0
⇒ 9t3 + 12t2 - 3t - 6 = 0
⇒ (t + 1) (9t2 + 3t - 6) = 0
⇒ (t + 1) (9t - 6) (t + 1) = 0
when t = - 1 , the point P is there,
So t = -6/9 = -2/3
⇒ Q = [1 - 3(-2/3)2, -2/3 - 3(-2/3)3]
⇒ Q = [1 - 4/3, -2/3 + (8/9)]
⇒ Q = (- 1/3, 2/9)
∴ The correct answer is option (4).
Differentiability Question 7:
If x = uv and \({\rm{y}} = \frac{{{\rm{u}} + {\rm{v}}}}{{{\rm{u}} - {\rm{v}}}}\), then \(\frac{{{\rm{\delta }}\left( {{\rm{u}},{\rm{\;v}}} \right)}}{{{\rm{\delta }}\left( {{\rm{x}},{\rm{\;y}}} \right)}}\) is a function of f(u,v). Find the value of f(2,1).
Answer (Detailed Solution Below) 0.125
Differentiability Question 7 Detailed Solution
Concept:
Jacobian of (y1, y2, y3) w.r.t. (x1, x2, x3) is equal to
\(\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial {y_1}}}{{\partial {x_1}}}}&{\frac{{\partial {y_1}}}{{\partial {x_2}}}}&{\frac{{\partial {y_1}}}{{\partial {x_3}}}}\\ {\frac{{\partial {y_2}}}{{\partial {x_1}}}}&{\frac{{\partial {y_2}}}{{\partial {x_2}}}}&{\frac{{\partial {y_2}}}{{\partial {x_3}}}}\\ {\frac{{\partial {y_3}}}{{\partial {x_1}}}}&{\frac{{\partial {y_3}}}{{\partial {x_2}}}}&{\frac{{\partial {y_3}}}{{\partial {x_3}}}} \end{array}} \right|\)
\(\frac{{\partial \left( {{x_1},{x_2},\;{x_3}} \right)}}{{\partial \left( {{y_1},\;{y_2},\;{y_3}} \right)}} =\frac{1}{\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} }\)
Calculation:
Given:
x = uv and \({\rm{y}} = \frac{{{\rm{u}} + {\rm{v}}}}{{{\rm{u}} - {\rm{v}}}}\)
\(\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial {\rm{x}}}}{{\partial {\rm{u}}}}}&{\frac{{\partial {\rm{x}}}}{{\partial {\rm{v}}}}}\\ {\frac{{\partial {\rm{y}}}}{{\partial {\rm{u}}}}}&{\frac{{\partial {\rm{y}}}}{{\partial {\rm{v}}}}} \end{array}} \right| \)
\(\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}} =\left| {\begin{array}{*{20}{c}} {\rm{v}}&{\rm{u}}\\ { - \frac{{2{\rm{v}}}}{{{{\left( {{\rm{u}} - {\rm{v}}} \right)}^2}}}}&{\frac{{2{\rm{u}}}}{{{{\left( {{\rm{u}} - {\rm{v}}} \right)}^2}}}} \end{array}} \right|\)
\(\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}} = \frac{{4{\rm{uv}}}}{{{{\left( {{\rm{u}} - {\rm{v}}} \right)}^2}}}\)
We know that
\(\frac{{\partial \left( {{x_1},{x_2},\;{x_3}} \right)}}{{\partial \left( {{y_1},\;{y_2},\;{y_3}} \right)}} =\frac{1}{\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} }\)
\(\frac{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}}{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}} = \frac{{{\rm{1}}}}{{{{\frac{{\partial \left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial \left( {{\rm{u}},{\rm{v}}} \right)}}}}}}\)
\(\therefore \frac{{\partial \left( {{\bf{u}},{\bf{v}}} \right)}}{{\partial \left( {{\bf{x}},{\bf{y}}} \right)}} = \frac{{{{\left( {{\bf{u}} - {\bf{v}}} \right)}^2}}}{{4{\bf{uv}}}}=f(u,v)\)
\(f(2,1)=\frac{{{{\left( {{\bf{2}} - {\bf{1}}} \right)}^2}}}{{4{{\;\times \;2\;\times\; 1}}}}=\frac{1}{8}=0.125\)
Differentiability Question 8:
If f and g are differentiable functions in (0, 1) satisfying f(0) = 2 = g(1), g(0) = 0 and f(1) = 6, then for some c ϵ (0, 1)
Answer (Detailed Solution Below)
Differentiability Question 8 Detailed Solution
Rolle’s mean value theorem:
Suppose f(x) is a function that satisfies all of the following
1. f(x) is continuous on the closed interval [a, b]
2. f(x) is differentiable on the closed interval (a, b)
3. f(a) = f(b)
Then there is a number c such that a < c < b and f'(c) = 0
Let h(x) = f(x) – 2g(x)
Given that f(x) and g(x) are continuous as well as differentiable
Hence h(x) is also continuous as well as differentiable.
h(0) = f(0) – 2g(0) = 2 – 2(0) = 2
h(1) = f(1) – 2g(1) = 6 – 2(2) = 2
h(0) = h(1)
hence h(x) satisfies all the conditions of Rolle’s theorem
Now, h'(c) = 0
⇒ f'(c) – 2g'(c) = 0
⇒ f'(c) = 2g'(c)Differentiability Question 9:
A function f(x) is defined as follows:-
\(f(x)=\left\{\begin{matrix}3 (x^2+2)&\rm if\ x\le0\\\ 4x+6&\rm if\ x>0\end{matrix}\right.\)
Then f(x) is ______
Answer (Detailed Solution Below)
Differentiability Question 9 Detailed Solution
Concept:
Continuity of a function:
We say f(x) is continuous at x = c if
LHL = RHL = value of f(c)
i.e., \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{c}} \right)\)
Differentiability of a Function:
A function f(x) is differentiable at a point x = a, in its domain if its derivative is continuous at a.
This means that f'(a) must exist, or equivalently:
\(\rm \displaystyle \lim_{x\to a^+}f'(x)=\lim_{x\to a^-}f'(x)=\lim_{x\to a}f'(x)=f'(a)\).
Calculation:-
To check the continuity,
\(\rm LHL=\displaystyle\lim_{x\rightarrow0}f(x)=\displaystyle\lim_{x\rightarrow0^-}3(x^2+2)=6\)
\(\rm RHL=\displaystyle\lim_{x\rightarrow0}f(x)=\displaystyle\lim_{x\rightarrow0^+}4x+6=6\)
∴ the function is continuous at x = 0
hence, the function can be differentiable or not differentiable.
To check the differentiability
LHD = \(\displaystyle\lim_{h\rightarrow0}\dfrac{f(0-h)-f(0)}{(0-h)}\)
\(=\displaystyle\lim_{h\rightarrow0}\dfrac{3(h^2+2)-6}{-h}\)
\(=\displaystyle\lim_{h\rightarrow0}\dfrac{3h^2+6-6}{-h}\)
= 0
RHD = \(\displaystyle\lim_{h\rightarrow0}\dfrac{f(0+h)-f(0)}{(0+h)}\)
\(=\displaystyle\lim_{h\rightarrow0}\dfrac{4h+6-6}{h}\)
= 4
∴ LHD ≠ RHD
Differentiability Question 10:
Let r = x2 + y - z and z3 -xy + yz + y3 = 1. Assume that x and y are independent variables. At (x, y, z) = (1, -1, 1), the value (correct to two decimal places) of \(\frac{{\partial {\rm{r}}}}{{\partial {\rm{x}}}}{\rm{\;}}\) is _________.
Answer (Detailed Solution Below)
Differentiability Question 10 Detailed Solution
Concept:
If x and y are independent variables, then \(\frac{\partial y}{\partial x}=0\) and \(\frac{\partial x}{\partial y}=0\)
Calculation:
Given:
r = x2 + y - z ----(1)
z3 - xy + yz + y3 = 1 ----(2)
Since y is an independent variables, derivative of ‘y’ w.r.t. ‘x’ is \(\frac{\partial y}{\partial x}=0\).
From equation (1):
Differentiate w.r.t to 'x'
\(\frac{{\partial r}}{{\partial x}} = 2x\;+\;\frac{\partial y}{\partial x}- \frac{{\partial z}}{{\partial x}}\)
\(\frac{{\partial r}}{{\partial x}} = 2x\;-\;\frac{{\partial z}}{{\partial x}}\;\;\;\;\left [ \because \frac{\partial y}{\partial x}=0 \right ]\) ----(3)
From equation (2):
Differentiate w.r.t to 'x'
z3 – xy + yz + y3 = 1
Differentiate w.r.t x
\(∴3{z^2}\frac{{\partial z}}{{\partial x}} - y\;-\;x\frac{\partial y}{\partial x} + y\frac{{\partial z}}{{\partial x}\;}\;+\;z\frac{\partial y}{\partial x}\;+\;3y^2\frac{\partial y}{\partial x}= 0\)
\(∴3{z^2}\frac{{\partial z}}{{\partial x}}\;-\;y\;+\;y\frac{{\partial z}}{{\partial x}\;}= 0\;\;\;\left [ \because \frac{\partial y}{\partial x}=0 \right ]\)
\(∴ \left( {3{z^2} + y} \right)\frac{{\partial z}}{{\partial x}} = y\)
\(∴\frac{{\partial z}}{{\partial x}} = \frac{y}{{3{z^2} + y}}\;\;\) ----(4)
Substitute (4) in (3)
\(\frac{{\partial r}}{{\partial x}} = 2x\;-\;\frac{{\partial z}}{{\partial x}}\;\;\;\;\)
\(\frac{{\partial r}}{{\partial x}} = 2x - \frac{y}{{3{z^2}\;+\;y}}\)
At, (1, -1, 1)
\({\left( {\frac{{\partial r}}{{\partial x}}} \right)_{\left( {1,\;- 1,\;1} \right)}} = 2\left(1 \right) - \frac{{ - 1}}{{3{{\left( 1 \right)}^2} + \left( { - 1} \right)}}\)
\(∴ 2 + \frac{1}{2}\)
∴ 2.5 is the required answer.