Indefinite Integrals MCQ Quiz - Objective Question with Answer for Indefinite Integrals - Download Free PDF

Last updated on Mar 21, 2025

Latest Indefinite Integrals MCQ Objective Questions

Indefinite Integrals Question 1:

The value of 01|5x3|dx is

  1. 12
  2. 1310
  3. 12
  4. 2810
  5. 1410

Answer (Detailed Solution Below)

Option 2 : 1310

Indefinite Integrals Question 1 Detailed Solution

Concept:

For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.

Calculation:

Given:

01|5x3|dx

f(x) = 5x - 3 = 0

x = 3/5

∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.

01|5x3|dx=035(5x3)dx+351(5x3)dx

=(52x2+3x)035+(5x223x)351

=(910+95)+[(523)(91095)]

=910+(12+910)=1310

Indefinite Integrals Question 2:

The value of 01|5x3|dx is

  1. 12
  2. 1310
  3. 12
  4. 2810
  5. 34

Answer (Detailed Solution Below)

Option 2 : 1310

Indefinite Integrals Question 2 Detailed Solution

Concept:

For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.

Calculation:

Given:

01|5x3|dx

f(x) = 5x - 3 = 0

x = 3/5

∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.

01|5x3|dx=035(5x3)dx+351(5x3)dx

=(52x2+3x)035+(5x223x)351

=(910+95)+[(523)(91095)]

=910+(12+910)=1310

Indefinite Integrals Question 3:

ex{f(x)+f(x)}dx is equal to

  1. exf(x)+C
  2. exf(x)+C
  3. ex+f(x)+C
  4. e​f(x)
  5. None of these

Answer (Detailed Solution Below)

Option 2 : exf(x)+C

Indefinite Integrals Question 3 Detailed Solution

Let,

 I=ex{f(x)+f(x)}dx

=exf(x)dx+exf(x)dx+C

By solving through integration by parts, we get

={exf(x)f(x)exdx}+exf(x)dx+C

=f(x).ex+C

where C is constant

Indefinite Integrals Question 4:

The value of ∫ log x dx, is

  1. xx + c
  2. x(log x + 1)x + c
  3. x(log x - 1) + c
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : x(log x - 1) + c

Indefinite Integrals Question 4 Detailed Solution


Explanation:

To solve this, we can use

Let u=logx  so that du=1xdx

dv = dx , so that v = x

Now, using integration by parts logxdx=xlogxx1xdx

=xlogx1dx

==xlogxx+C

x(logx1)+C

So, the correct answer is x(logx1)+C

The correct option is option 3.

Indefinite Integrals Question 5:

The value of 1+sinxdx, is

  1. sin(x2)+cos(x2)
  2. 2(cos (x/2) - sin (x/2))
  3. 2(sin (x/2) - cos (x/2))
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 2(sin (x/2) - cos (x/2))

Indefinite Integrals Question 5 Detailed Solution

Explanation:

1+sinxdx

sin2x2+cos2x2+2sinx2cosx2dx

(sinx2+cosx2)2dx

(sinx2+cosx2)dx

2(- cos (x/2) + sin (x/2))

= 2(sin (x/2) - cos (x/2))

(3) is true.

Top Indefinite Integrals MCQ Objective Questions

Let x be a continuous variable defined over the interval (-∞, ∞) and f(x)=exex. The integral g(x)=f(x)dx  is equal to

  1. eex
  2. eex
  3. eex
  4. e-x

Answer (Detailed Solution Below)

Option 2 : eex

Indefinite Integrals Question 6 Detailed Solution

Download Solution PDF

g(x)=f(x)dxf(x)=exexg(x)=exexdx=exeexdx

Substitude e-x = t

-e-x dx = dt

g(x)=dtet=etdtg(x)=etg(x)=eex

Consider the following definite integral:

I=01(sin1x)21x2dx

The value of the integral is

  1. π324
  2. π312
  3. π348
  4. π364

Answer (Detailed Solution Below)

Option 1 : π324

Indefinite Integrals Question 7 Detailed Solution

Download Solution PDF

Explanation:

I=01(sin1x)21x2dx

Put sin-1 x = t

dx1x2=dt=0π2t2dt=t33]0π2=π324

The value of 010x(x2+y2)dA, where dA indicate small area in xy-plane, is

  1. 12 sq. units
  2. 13 sq. units
  3. 12 sq. units
  4. 13 sq. units

Answer (Detailed Solution Below)

Option 2 : 13 sq. units

Indefinite Integrals Question 8 Detailed Solution

Download Solution PDF

Concept:

0m0xf(x,y)dA

Since the inside limit is in terms of x, therefore we have to integrate first the 'y' terms and convert whole expression in terms of x.

Calculation:

Given:

010x(x2+y2)dA

01[0x(x2+y2)dy]dx

01(x2[y]0x+[y33]0x)dx

01(x3+x33)dx

01(4x33)dx

(4x412)01

13

(xx22+x33x44+....) dx is equal to

  1. 11+x + Constant
  2. 11+x2 + Constant
  3. 11x + Constant
  4. 11x2 + Constant

Answer (Detailed Solution Below)

Option 3 : 11x + Constant

Indefinite Integrals Question 9 Detailed Solution

Download Solution PDF

The Given Question is Wrong, Marks are allotted to all.

Explanation-

Given that, I=(xx22+x33x44+.....

I=x22x36+x412x520+......

Expanding the options given,

option 1-

11+x=(1+x)1=1x+x2x3.......

option 2-

11+x2=(1+x2)1=1x2+x4x6.......

option 3-

11x=(1x)1=(1+x+x2+x3.......

option 4-

11x2=(1x2)1=(1+x2+x4+x6.......

So none of the options are matching with the correct answer. 

Evaluateesin1x11x2dx

  1. esinx+c
  2. 2esin1x+c
  3. esin1x+c
  4. esin1x+2c

Answer (Detailed Solution Below)

Option 3 : esin1x+c

Indefinite Integrals Question 10 Detailed Solution

Download Solution PDF

Explanation:

Given Integral 

esin1x11x2dx

Let, sin-1 x = t ⇒ 11x2dx=dt as we know the derivative of sin-1 x  = 11x2 

Now the equation reduces to 

etdt ⇒ we know ∫exdx = ex + c 

∴ ∫ etdt = et + c, as t = sin-1 x our equation becomes esin-1x  + c

∴ esin1x11x2dx = esin1x+c

What is (cosx)1.5(sinx)1.5sinxcosxdx equal to ?

  1. sinxcosx + c
  2. sinx+cosx + c
  3. 2sinx+2cosx + c
  4. 12sinx+12cosx + c

Answer (Detailed Solution Below)

Option 3 : 2sinx+2cosx + c

Indefinite Integrals Question 11 Detailed Solution

Download Solution PDF

Given,

I = (cosx)1.5(sinx)1.5sinxcosxdx

⇒ I = cosxsinxsinxcosxdx

⇒ I = cosxsinxdxsinxcosxdx = I1 - I2 (let)

Computing I1,

I1 = cosxsinxdx

Put sin x = t → cos x dx = dt

⇒ I1dtt=t12+112+1+c1

⇒ I1 = 2t+c1

⇒ I1 = 2sinx+c1

Similarly, 

I2 = sinxcosxdx

Put cos x = t → - sin x dx = dt

⇒ I2 = dtt=t12+112+1+c2 

⇒ I2 = 2t+c2 

⇒ I2 = 2cosx+c2 

Putting these value in I,

⇒ I = I1 - I2 = 2sinx+c1 - (2cosx)+c2

⇒ I = 2sinx+2cosx + c

∴ The correct answer is option (3).

xndx=xn+1n+1+c is not true, if n is equal to

  1. 0
  2. 1
  3. 2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Indefinite Integrals Question 12 Detailed Solution

Download Solution PDF

Explanation:

xndx=xn+1n+1+c is not true for n = -1

because for n = -1

xndx=x1dx = 1xdx = log |x| + c

(5) is correct

Indefinite Integrals Question 13:

0xex2dx=

  1. 13
  2. 12
  3. 12
  4. 13

Answer (Detailed Solution Below)

Option 2 : 12

Indefinite Integrals Question 13 Detailed Solution

Explanation:

I=0xex2dx

Let, t = x2 ⇒ dt = 2xdx ⇒ xdx = dt/2

I=120etdt=12|et|0=12|1et|0=12[01]I=12  

Indefinite Integrals Question 14:

The value of 01|5x3|dx is

  1. 12
  2. 1310
  3. 12
  4. 2810

Answer (Detailed Solution Below)

Option 2 : 1310

Indefinite Integrals Question 14 Detailed Solution

Concept:

For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.

Calculation:

Given:

01|5x3|dx

f(x) = 5x - 3 = 0

x = 3/5

∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.

01|5x3|dx=035(5x3)dx+351(5x3)dx

=(52x2+3x)035+(5x223x)351

=(910+95)+[(523)(91095)]

=910+(12+910)=1310

Indefinite Integrals Question 15:

Let x be a continuous variable defined over the interval (-∞, ∞) and f(x)=exex. The integral g(x)=f(x)dx  is equal to

  1. eex
  2. eex
  3. eex
  4. e-x

Answer (Detailed Solution Below)

Option 2 : eex

Indefinite Integrals Question 15 Detailed Solution

g(x)=f(x)dxf(x)=exexg(x)=exexdx=exeexdx

Substitude e-x = t

-e-x dx = dt

g(x)=dtet=etdtg(x)=etg(x)=eex

Get Free Access Now
Hot Links: teen patti jodi teen patti game teen patti gold new version 2024 all teen patti