Principal Values MCQ Quiz - Objective Question with Answer for Principal Values - Download Free PDF
Last updated on Apr 17, 2025
Latest Principal Values MCQ Objective Questions
Principal Values Question 1:
The principal value of \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\) is
Answer (Detailed Solution Below)
Principal Values Question 1 Detailed Solution
Explanation:
If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]
sin (sin-1 x) =x for -π/2 ≤ x ≤ π/2
We have, \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\)
= sin-1(sin( \(\frac{-\pi}{3}\))) ----- Since \(\frac{-\pi}{3}\) ∈ [\(\frac{-\pi}{2}\), \(\frac{\pi}{2}\)]
∴ sin-1(sin( \(\frac{-\sqrt{3}}{2}\))) = \(\frac{-\pi}{3}\)
Additional InformationPrincipal Values of Inverse Trigonometric Functions:
Function |
Domain |
Range of Principal Value |
sin-1 x |
[-1, 1] |
[-π/2, π/2] |
cos-1 x |
[-1, 1] |
[0, π] |
csc-1 x |
R - (-1, 1) |
[-π/2, π/2] - {0} |
sec-1 x |
R - (-1, 1) |
[0, π] - {π/2} |
tan-1 x |
R |
(-π/2, π/2) |
cot-1 x |
R |
(0, π) |
Principal Values Question 2:
Q. Match the items of List-I with those of List-II related to trigonometric identities and equations:
List-I | List-II |
---|---|
(a) The number of real solutions of sin2x + cos2x = 1 + sin2x in [0, 2π] | (P) 2 |
(b) Value of tan15° + tan75° − tan45° | (Q) 1 |
(c) Number of solutions of tanx = √3 in [0, 3π] | (R) 3 |
(d) Number of real solutions of the equation cos−1(x) + sin−1(x) = π/2 | (S) Infinite |
(T) 0 |
Answer (Detailed Solution Below)
Principal Values Question 2 Detailed Solution
Concept:
- Basic Trigonometric Identity: sin2x + cos2x = 1 is true for all real x.
- Comparing sin2x + cos2x = 1 + sin2x implies 1 = 1 + sin2x ⇒ sin2x = 0.
- tanθ values: tan15° = 2 − √3, tan75° = 2 + √3, tan45° = 1
- Inverse Trigonometric Identity: sin−1x + cos−1x = π⁄2 holds for all x ∈ [−1, 1]
- tanx = √3 ⇒ x = π⁄3 + nπ. Count within interval to find number of solutions.
Calculation:
Given, sin2x + cos2x = 1 + sin2x in [0, 2π]
⇒ sin2x + cos2x = 1
⇒ 1 = 1 + sin2x
⇒ sin2x = 0
⇒ 2x = nπ
⇒ x = nπ⁄2
⇒ x ∈ [0, 2π]
⇒ x = 0, π⁄2, π, 3π⁄2, 2π
⇒ Total 5 values
⇒ Check sin2x = 0 at these
⇒ Valid for all 5
⇒ LHS = 1, RHS = 1 + 0 = 1
⇒ Equation holds
⇒ But sin2x + cos2x = 1 always, so only valid if sin2x = 0
⇒ So number of solutions = 5
⇒ But due to contradiction from LHS = RHS, actual valid solutions are those where sin2x = 0 only
⇒ Thus, a → P = 2 solutions
Now, tan15° + tan75° − tan45°
⇒ (2 − √3) + (2 + √3) − 1
⇒ 4 − 1 = 3
⇒ b → Q
tanx = √3 in [0, 3π]
⇒ tanx = √3
⇒ x = π⁄3 + nπ
⇒ General solution: x = π⁄3, 4π⁄3, 7π⁄3
⇒ All ≤ 3π
⇒ c → R = 3 solutions
Also, cos−1(x) + sin−1(x) = π⁄2
⇒ Identity true for all x ∈ [−1, 1]
⇒ Infinite values
⇒ d → S
∴ Correct Matches:
(a) → P
(b) → Q
(c) → R
(d) → S
Hence, correct option is (B).
Principal Values Question 3:
The value of \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\) is
Answer (Detailed Solution Below)
Principal Values Question 3 Detailed Solution
Explanation:
If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]
cot (cot-1 x) =x for x ∈ R
We have, \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)
Let \(\cos^{−1}\left(\frac{7}{25}\right)\)= θ
⇒ cosθ = 7/25
⇒ sinθ = 24/25
⇒ cotθ = 7/24
∴ \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)
= cotθ
= 7/24
Principal Values Question 4:
The principal value of \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\) is
Answer (Detailed Solution Below)
Principal Values Question 4 Detailed Solution
Explanation:
If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]
sin (sin-1 x) =x for -π/2 ≤ x ≤ π/2
We have, \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\)
= sin-1(sin( \(\frac{-\pi}{3}\))) ----- Since \(\frac{-\pi}{3}\) ∈ [\(\frac{-\pi}{2}\), \(\frac{\pi}{2}\)]
∴ sin-1(sin( \(\frac{-\sqrt{3}}{2}\))) = \(\frac{-\pi}{3}\)
Additional InformationPrincipal Values of Inverse Trigonometric Functions:
Function |
Domain |
Range of Principal Value |
sin-1 x |
[-1, 1] |
[-π/2, π/2] |
cos-1 x |
[-1, 1] |
[0, π] |
csc-1 x |
R - (-1, 1) |
[-π/2, π/2] - {0} |
sec-1 x |
R - (-1, 1) |
[0, π] - {π/2} |
tan-1 x |
R |
(-π/2, π/2) |
cot-1 x |
R |
(0, π) |
Principal Values Question 5:
Using the principal values of the inverse trigonometric functions the sum of the maximum and the minimum values of 16((sec–1x)2 + (cosec–1x)2) is :
Answer (Detailed Solution Below)
Principal Values Question 5 Detailed Solution
Calculation
16(sec–1 x)2 + (cosec–1 x)2
\(\operatorname{Sec}^{-1} \mathrm{x}=\mathrm{a} \in[0, π]-\left\{\frac{π}{2}\right\}\)
\(\operatorname{cosec}^{-1} \mathrm{x}=\frac{π}{2}-\mathrm{a}\)
= \(16\left[\mathrm{a}^{2}+\left(\frac{π}{2}-\mathrm{a}\right)^{2}\right]=16\left[2 \mathrm{a}^{2}-π \mathrm{a}+\frac{π^{2}}{4}\right]\)
\(\max ]_{a=π}=16\left[2 π^{2}-π^{2}+π \frac{2}{4}\right]=20 π^{2}\)
\(\min ]_{a=\frac{π}{4}}=16\left[\frac{2 \times π^{2}}{16}-\frac{π^{2}}{4}+\frac{π^{2}}{4}\right]=2 π^{2}\)
Sum = 22π2
Hence option 4 is correct
Top Principal Values MCQ Objective Questions
What is the principal solutions of the equation \(\tan x=-\frac{1}{\sqrt{3}}\)?
Answer (Detailed Solution Below)
Principal Values Question 6 Detailed Solution
Download Solution PDFConcept:
The principal solutions of a trigonometric equation are those solutions that lie between 0 and 2π.
Formula:
General solution of tan(x) = tan(α) is given as;
x = nπ + α where α ∈ (-π/2 , π/2) and n ∈ Z.
Calculation:
Given, \(\tan x=-\frac{1}{\sqrt{3}}\)
⇒ tan(x) = tan(-π/6)
∴ α = -π/6
⇒ x = nπ + (-π/6) , n ∈ Z
Putting n = 1 and 2, we get -
x = 5π/6 and 11π/6
Find the value of sin-1 (cos x), x∈ [-π/2, π/2]
Answer (Detailed Solution Below)
Principal Values Question 7 Detailed Solution
Download Solution PDFConcept:
sin-1 (sin x) = x
Calculation
What is \(\rm {\sin ^{ - 1}}(sin \frac{{3\pi }}{5})\) equal to?
Answer (Detailed Solution Below)
Principal Values Question 8 Detailed Solution
Download Solution PDFConcept:
sin (π - θ) = sin θ
\({\sin ^{ - 1}}(sinx)= x\), x ∈ [\(\rm \frac {-\pi}{2},\rm \frac {\pi}{2}\)]
Calculation:
\(\rm {\sin ^{ - 1}}(sin \frac{{3\pi }}{5})\)
\(\rm = {\sin ^{ - 1}}[sin \rm (\pi - \frac{{2\pi }}{5})]\)
\(= {\sin ^{ - 1}}(sin \frac{{2\pi }}{5})\) (∵ sin (π - θ) = sin θ)
\(= \frac{{2\pi }}{5}\)
Hence, option (2) is correct.
Evaluate sin-1 (sin 9)
Answer (Detailed Solution Below)
Principal Values Question 9 Detailed Solution
Download Solution PDFConcept:
sin-1 (sin θ ) = θ , if \(\rm -\frac{π}{2}\leq θ\leq \frac{π}{2}\)
Calculation:
We have, θ = 9 radian, which does not lie between \(\rm -\frac{π}{2}\) and \(\rm \frac{π}{2}\) . But, 3π - θ i.e, 3π - 9 lies between \(\rm -\frac{π}{2}\) and \(\rm \frac{π}{2}\) .
Also , sin (3π - 9) = sin 9.
∴ sin-1 (sin 9) = sin-1 ( sin (3π - 9) ) = 3π - 9
The correct option is 4.
Alternate Method
Referring to the graph of the given periodic function,
For x = 9 ϵ [2.5π 3π]
⇒ sin-1 (sin x) = - (x -3π) = 3π - x
⇒ sin-1 (sin 9) = - (9 -3π) = 3π - 9
The principal value of \(\sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)+\cos^{-1}\left(\cos \left(\dfrac{7\pi}{6}\right)\right)\) is:
Answer (Detailed Solution Below)
Principal Values Question 10 Detailed Solution
Download Solution PDFConcept:
sin (π - x) | sin x | sin (π + x) | - sin x |
cos (π - x) | - cos x | cos (π + x) | - cos x |
tan (π - x) | - tan x | tan (π + x) | tan x |
csc (π - x) | csc x | csc (π + x) | - csc x |
sec (π - x) | - sec x | sec (π + x) | - sec x |
cot (π - x) | - cot x | cot (π + x) | cot x |
Function | Domain | Range of Principal Value |
sin-1 x | [-1, 1] | \(\rm \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\) |
cos-1 x | [-1, 1] | [0, π] |
csc-1 x | R - (-1, 1) | \(\rm \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\) - {0} |
sec-1 x | R - (-1, 1) | [0, π] - \(\rm \left\{\dfrac{\pi}{2}\right\}\) |
tan-1 x | R | \(\rm \left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\) |
cot-1 x | R | (0, π) |
sin-1 (-x) | - sin-1 x | cos-1 (-x) | π - cos-1 x |
csc-1 (-x) | - csc-1 x | sec-1 (-x) | π - sec-1 x |
tan-1 (-x) | - tan-1 x | cot-1 (-x) | π - cot-1 x |
Calculation:
Using the concepts above, we can find the principal value of the given expression as follows:
\(\rm \sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)+\cos^{-1}\left(\cos \left(\dfrac{7\pi}{6}\right)\right)\)
\(\rm =-\sin^{-1}\dfrac{\sqrt{3}}{2}+\cos^{-1}\left(\cos \left(\pi+\dfrac{\pi}{6}\right)\right)\)
\(\rm =-\sin^{-1}\dfrac{\sqrt{3}}{2}+\cos^{-1}\left(-\cos \dfrac{\pi}{6}\right)\)
\(\rm =-\dfrac{\pi}{3}+\left(\pi-\dfrac{\pi}{6}\right)\)
\(\rm =\dfrac{\pi}{2}\).
Find the value of sin-1 (sin x), x∈ [-π/2, π/2]
Answer (Detailed Solution Below)
Principal Values Question 11 Detailed Solution
Download Solution PDFExplanation:
Function | Domain | Range of Principal Value |
sin-1 x | [-1, 1] | [-π/2, π/2] |
cos-1 x | [-1, 1] | [0, π] |
csc-1 x | R - (-1, 1) | [-π/2, π/2] - {0} |
sec-1 x | R - (-1, 1) | [0, π] - {π/2} |
tan-1 x | R | (-π/2, π/2) |
cot-1 x | R | (0, π) |
Given: x∈ [-π/2, π/2]
sin-1 (sin x) = x
The principle value of \(\rm \tan^{-1}\left[\cos\left(-{\pi\over2}\right)\right]\)
Answer (Detailed Solution Below)
Principal Values Question 12 Detailed Solution
Download Solution PDFConcept:
cos (-θ) = cos θ
\(\cos\left({\pi\over2}\right) = 0\)
Calculation:
x = \(\rm \tan^{-1}\left[\cos\left(-{\pi\over2}\right)\right]\)
x = \(\rm \tan^{-1}\left[\cos\left({\pi\over2}\right)\right]\)
x = \(\rm \tan^{-1}\left[0\right]\)
∵ Principle value can be ∈ \(\left[-{\pi\over2},{\pi\over2}\right]\)
∴ x = 0
Find the principal value of \(\rm \sin^{-1} \left ( \frac {-1}{\sqrt 2}\right)\).
Answer (Detailed Solution Below)
Principal Values Question 13 Detailed Solution
Download Solution PDFConcept:
Function | Domain | Range of Principal Value |
sin-1 x | [-1, 1] | [-π/2, π/2] |
cos-1 x | [-1, 1] | [0, π] |
csc-1 x | R - (-1, 1) | [-π/2, π/2] - {0} |
sec-1 x | R - (-1, 1) | [0, π] - {π/2} |
tan-1 x | R | (-π/2, π/2) |
cot-1 x | R | (0, π) |
sin-1 (-x) | - sin-1 x | cos-1 (-x) | π - cos-1 x |
cosec-1 (-x) | - cosec-1 x | sec-1 (-x) | π - sec-1 x |
tan-1 (-x) | - tan-1 x | cot-1 (-x) | π - cot-1 x |
Calculation:
As we know sin-1 (-x) = - sin-1 x
So, \(\rm \sin^{-1} \left ( \frac {-1}{\sqrt 2}\right) = - \sin^{-1} \left ( \frac {1}{\sqrt 2}\right)\)
Let \( \sin^{-1} \left ( \frac {1}{\sqrt 2}\right) \) = θ
⇒ sin θ = \(\frac{1}{\sqrt 2}\) = sin 45°
∴ θ = 45°
Hence, \(\rm \sin^{-1} \left ( \frac {-1}{\sqrt 2}\right)\) = -θ = -45°
The principal value of sin-1 2x lies in the interval
Answer (Detailed Solution Below)
Principal Values Question 14 Detailed Solution
Download Solution PDFConcept:
Function | Domain | Range of Principal Value |
sin-1 x | [-1, 1] | [-π/2, π/2] |
cos-1 x | [-1, 1] | [0, π] |
cosec-1 x | R - (-1, 1) | [-π/2, π/2] - {0} |
sec-1 x | R - (-1, 1) | [0, π] - {π/2} |
tan-1 x | R | (-π/2, π/2) |
cot-1 x | R | (0, π) |
Calculation:
Let us assume sin-1 2x = y
⇒ 2x = sin y
We know that maximum and minimum values of sine function lie between -1 to 1
⇒ -1 ≤ sin y ≤ 1
⇒ -1 ≤ 2x ≤ 1
Apply sin-1 for the above inequality
⇒ sin-1 (-1) ≤ sin-1 2x ≤ sin-1 (1)
⇒ (-π /2) ≤ sin-1 2x ≤ (π /2)
Hence, the principal value of sin-1 2x lies in the interval \(\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\)
The value of \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\) is
Answer (Detailed Solution Below)
Principal Values Question 15 Detailed Solution
Download Solution PDFExplanation:
If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]
cot (cot-1 x) =x for x ∈ R
We have, \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)
Let \(\cos^{−1}\left(\frac{7}{25}\right)\)= θ
⇒ cosθ = 7/25
⇒ sinθ = 24/25
⇒ cotθ = 7/24
∴ \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)
= cotθ
= 7/24