Principal Values MCQ Quiz - Objective Question with Answer for Principal Values - Download Free PDF

Last updated on Apr 17, 2025

Latest Principal Values MCQ Objective Questions

Principal Values Question 1:

The principal value of \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\) is

  1. \(−\frac{2\pi}{3}\)
  2. \(−\frac{\pi}{3}\)
  3. \(\frac{4\pi}{3}\)
  4. \(\frac{5\pi}{3}\)
  5. \(\frac{2\pi}{3}\)

Answer (Detailed Solution Below)

Option 2 : \(−\frac{\pi}{3}\)

Principal Values Question 1 Detailed Solution

Explanation:

If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]

sin (sin-1 x) =x for -π/2 ≤ x ≤ π/2

We have, \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\)

= sin-1(sin( \(\frac{-\pi}{3}\)))  ----- Since \(\frac{-\pi}{3}\) ∈ [\(\frac{-\pi}{2}\), \(\frac{\pi}{2}\)]

∴ sin-1(sin( \(\frac{-\sqrt{3}}{2}\))) = \(\frac{-\pi}{3}\)

Additional InformationPrincipal Values of Inverse Trigonometric Functions:

Function

Domain

Range of Principal Value

sin-1 x

[-1, 1]

[-π/2, π/2]

cos-1 x

[-1, 1]

[0, π]

csc-1 x

R - (-1, 1)

[-π/2, π/2] - {0}

sec-1 x

R - (-1, 1)

[0, π] - {π/2}

tan-1 x

R

(-π/2, π/2)

cot-1 x

R

(0, π)

Principal Values Question 2:

Q. Match the items of List-I with those of List-II related to trigonometric identities and equations:

List-I List-II
(a) The number of real solutions of sin2x + cos2x = 1 + sin2x in [0, 2π] (P) 2
(b) Value of tan15° + tan75° − tan45° (Q) 1
(c) Number of solutions of tanx = √3 in [0, 3π] (R) 3
(d) Number of real solutions of the equation cos−1(x) + sin−1(x) = π/2 (S) Infinite
  (T) 0

 

  1.  a → T, b → Q, c → R, d → S
  2. a → P, b → Q, c → R, d → S
  3. a → T, b → Q, c → P, d → R
  4. a → P, b → R, c → Q, d → T

Answer (Detailed Solution Below)

Option 2 : a → P, b → Q, c → R, d → S

Principal Values Question 2 Detailed Solution

Concept:

  • Basic Trigonometric Identity: sin2x + cos2x = 1 is true for all real x.
  • Comparing sin2x + cos2x = 1 + sin2x implies 1 = 1 + sin2x ⇒ sin2x = 0.
  • tanθ values: tan15° = 2 − √3, tan75° = 2 + √3, tan45° = 1
  • Inverse Trigonometric Identity: sin−1x + cos−1x = π⁄2 holds for all x ∈ [−1, 1]
  • tanx = √3 ⇒ x = π⁄3 + nπ. Count within interval to find number of solutions.

 

Calculation:

Given, sin2x + cos2x = 1 + sin2x in [0, 2π]

⇒ sin2x + cos2x = 1

⇒ 1 = 1 + sin2x

⇒ sin2x = 0

⇒ 2x = nπ

⇒ x = nπ⁄2

⇒ x ∈ [0, 2π]

⇒ x = 0, π⁄2, π, 3π⁄2, 2π

⇒ Total 5 values

⇒ Check sin2x = 0 at these

⇒ Valid for all 5

⇒ LHS = 1, RHS = 1 + 0 = 1

⇒ Equation holds

⇒ But sin2x + cos2x = 1 always, so only valid if sin2x = 0

⇒ So number of solutions = 5

⇒ But due to contradiction from LHS = RHS, actual valid solutions are those where sin2x = 0 only

⇒ Thus, a → P = 2 solutions

Now, tan15° + tan75° − tan45°

⇒ (2 − √3) + (2 + √3) − 1

⇒ 4 − 1 = 3

⇒ b → Q

tanx = √3 in [0, 3π]

⇒ tanx = √3

⇒ x = π⁄3 + nπ

⇒ General solution: x = π⁄3, 4π⁄3, 7π⁄3

⇒ All ≤ 3π

⇒ c → R = 3 solutions

Also, cos−1(x) + sin−1(x) = π⁄2

⇒ Identity true for all x ∈ [−1, 1]

⇒ Infinite values

⇒ d → S

∴ Correct Matches:
(a) → P
(b) → Q
(c) → R
(d) → S
Hence, correct option is (B).

Principal Values Question 3:

The value of \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\) is

  1. \(\frac{25}{24}\)
  2. \(\frac{25}{7}\)
  3. \(\frac{24}{25}\)
  4. \(\frac{8}{24}\)
  5. \(\frac{7}{24}\)

Answer (Detailed Solution Below)

Option 5 : \(\frac{7}{24}\)

Principal Values Question 3 Detailed Solution

Explanation:

If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]

cot (cot-1 x) =x for x ∈ R

We have, \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)

Let \(\cos^{−1}\left(\frac{7}{25}\right)\)= θ

⇒ cosθ = 7/25

⇒ sinθ = 24/25

⇒ cotθ = 7/24

∴  \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)

= cotθ 

= 7/24

Principal Values Question 4:

The principal value of \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\) is

  1. \(−\frac{2\pi}{3}\)
  2. \(\frac{\pi}{3}\)
  3. \(\frac{4\pi}{3}\)
  4. \(\frac{5\pi}{3}\)
  5. \(\frac{-\pi}{3}\)

Answer (Detailed Solution Below)

Option 5 : \(\frac{-\pi}{3}\)

Principal Values Question 4 Detailed Solution

Explanation:

If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]

sin (sin-1 x) =x for -π/2 ≤ x ≤ π/2

We have, \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\)

= sin-1(sin( \(\frac{-\pi}{3}\)))  ----- Since \(\frac{-\pi}{3}\) ∈ [\(\frac{-\pi}{2}\), \(\frac{\pi}{2}\)]

∴ sin-1(sin( \(\frac{-\sqrt{3}}{2}\))) = \(\frac{-\pi}{3}\)

Additional InformationPrincipal Values of Inverse Trigonometric Functions:

Function

Domain

Range of Principal Value

sin-1 x

[-1, 1]

[-π/2, π/2]

cos-1 x

[-1, 1]

[0, π]

csc-1 x

R - (-1, 1)

[-π/2, π/2] - {0}

sec-1 x

R - (-1, 1)

[0, π] - {π/2}

tan-1 x

R

(-π/2, π/2)

cot-1 x

R

(0, π)

Principal Values Question 5:

Using the principal values of the inverse trigonometric functions the sum of the maximum and the minimum values of 16((sec–1x)2 + (cosec–1x)2) is :

  1. 24π2
  2. 18π2
  3. 31π2
  4. 22π2

Answer (Detailed Solution Below)

Option 4 : 22π2

Principal Values Question 5 Detailed Solution

Calculation 

16(sec–1 x)2 + (cosec–1 x)2

\(\operatorname{Sec}^{-1} \mathrm{x}=\mathrm{a} \in[0, π]-\left\{\frac{π}{2}\right\}\)

\(\operatorname{cosec}^{-1} \mathrm{x}=\frac{π}{2}-\mathrm{a}\)

\(16\left[\mathrm{a}^{2}+\left(\frac{π}{2}-\mathrm{a}\right)^{2}\right]=16\left[2 \mathrm{a}^{2}-π \mathrm{a}+\frac{π^{2}}{4}\right]\)

\(\max ]_{a=π}=16\left[2 π^{2}-π^{2}+π \frac{2}{4}\right]=20 π^{2}\)

\(\min ]_{a=\frac{π}{4}}=16\left[\frac{2 \times π^{2}}{16}-\frac{π^{2}}{4}+\frac{π^{2}}{4}\right]=2 π^{2}\)

Sum = 22π2 

Hence option 4 is correct

Top Principal Values MCQ Objective Questions

What is the principal solutions of the equation \(\tan x=-\frac{1}{\sqrt{3}}\)?

  1. \(\frac{9 \pi}{3}, \frac{7 \pi}{3}\)
  2. \(\frac{2 \pi}{3}, \frac{2 \pi}{3}\)
  3. \(\frac{3 \pi}{6}, \frac{2 \pi}{6}\)
  4. \(\frac{11 \pi}{6}, \frac{5 \pi}{6}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{11 \pi}{6}, \frac{5 \pi}{6}\)

Principal Values Question 6 Detailed Solution

Download Solution PDF

Concept:

 

The principal solutions of a trigonometric equation are those solutions that lie between 0 and 2π.

Formula:

General solution of tan(x) = tan(α) is  given as;

x = nπ + α where α ∈ (-π/2 , π/2) and n ∈ Z.

Calculation:

Given, \(\tan x=-\frac{1}{\sqrt{3}}\)

⇒ tan(x) = tan(-π/6)

∴ α = -π/6

⇒ x = nπ + (-π/6) , n ∈ Z

Putting n = 1 and 2, we get - 

x = 5π/6 and 11π/6

Find the value of sin-1 (cos x), x∈ [-π/2, π/2]

  1. x
  2. π - x
  3. \(\rm \left(\frac {\pi}{2} - x\right)\)
  4. -x

Answer (Detailed Solution Below)

Option 3 : \(\rm \left(\frac {\pi}{2} - x\right)\)

Principal Values Question 7 Detailed Solution

Download Solution PDF

Concept:

sin-1 (sin x) = x

 

Calculation

Given: x∈ [-π/2, π/2] 
sin-1 (cos x) = sin-1 sin \(\rm \left(\frac {\pi}{2} - x\right)\)
As we know that, sin-1 (sin x) = x
Therefore,sin-1 (cos x) = sin-1 sin \(\rm \left(\frac {\pi}{2} - x\right)\) = \(\rm \left(\frac {\pi}{2} - x\right)\) 

What is \(\rm {\sin ^{ - 1}}(sin \frac{{3\pi }}{5})\) equal to?

  1. \(\frac{{3\pi }}{5}\)
  2. \(\frac{{2\pi }}{5}\)
  3. \(\frac{\pi }{5}\)
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\frac{{2\pi }}{5}\)

Principal Values Question 8 Detailed Solution

Download Solution PDF

Concept:

sin (π - θ) = sin θ 

\({\sin ^{ - 1}}(sinx)= x\), x ∈ [\(\rm \frac {-\pi}{2},\rm \frac {\pi}{2}\)]

Calculation:

\(\rm {\sin ^{ - 1}}(sin \frac{{3\pi }}{5})\)

\(\rm = {\sin ^{ - 1}}[sin \rm (\pi - \frac{{2\pi }}{5})]\)

\(= {\sin ^{ - 1}}(sin \frac{{2\pi }}{5})\)                       (∵ sin (π - θ) = sin θ)

\(= \frac{{2\pi }}{5}\)

Hence, option (2) is correct.

Evaluate sin-1 (sin 9) 

  1. 9
  2. π - 9
  3. 2π - 9
  4. 3π - 9

Answer (Detailed Solution Below)

Option 4 : 3π - 9

Principal Values Question 9 Detailed Solution

Download Solution PDF

Concept: 

sin-1 (sin θ ) = θ , if \(\rm -\frac{π}{2}\leq θ\leq \frac{π}{2}\) 

Calculation: 

We have, θ = 9 radian, which does not lie between \(\rm -\frac{π}{2}\) and \(\rm \frac{π}{2}\) . But, 3π - θ  i.e,  3π - 9 lies between \(\rm -\frac{π}{2}\) and \(\rm \frac{π}{2}\) . 

Also , sin (3π - 9) = sin 9.

∴  sin-1 (sin 9) = sin-1 ( sin (3π - 9) ) = 3π - 9 

The correct option is 4.

Alternate Method

Referring to the graph of the given periodic function,

F2 Savita Defence 28-3-23 D10

For x = 9 ϵ [2.5π  3π]

⇒ sin-1 (sin x) = - (x -3π) =  3π - x 

⇒ sin-1 (sin 9) = - (9 -3π) =   3π - 9

The principal value of \(\sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)+\cos^{-1}\left(\cos \left(\dfrac{7\pi}{6}\right)\right)\) is:

  1. \(\dfrac{\pi}{2}\)
  2. \(\dfrac{3\pi}{2}\)
  3. \(\dfrac{5\pi}{6}\)
  4. \(\dfrac{\pi}{3}\)

Answer (Detailed Solution Below)

Option 1 : \(\dfrac{\pi}{2}\)

Principal Values Question 10 Detailed Solution

Download Solution PDF

Concept:

Trigonometric Identities:
sin (π - x) sin x sin (π + x) - sin x
cos (π - x) - cos x cos (π + x) - cos x
tan (π - x) - tan x tan (π + x) tan x
csc (π - x) csc x csc (π + x) - csc x
sec (π - x) - sec x sec (π + x) - sec x
cot (π - x) - cot x cot (π + x) cot x

 

Principal Values of Inverse Trigonometric Functions:

Function Domain Range of Principal Value
sin-1 x [-1, 1] \(\rm \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\)
cos-1 x [-1, 1] [0, π]
csc-1 x R - (-1, 1) \(\rm \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\) - {0}
sec-1 x R - (-1, 1) [0, π] - \(\rm \left\{\dfrac{\pi}{2}\right\}\)
tan-1 x R \(\rm \left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\)
cot-1 x R (0, π)

 

Inverse Trigonometric Functions for Negative Arguments:

sin-1 (-x) - sin-1 x cos-1 (-x) π - cos-1 x
csc-1 (-x) - csc-1 x sec-1 (-x) π - sec-1 x
tan-1 (-x) - tan-1 x cot-1 (-x) π - cot-1 x

 

Calculation: 

Using the concepts above, we can find the principal value of the given expression as follows:

\(\rm \sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)+\cos^{-1}\left(\cos \left(\dfrac{7\pi}{6}\right)\right)\)

\(\rm =-\sin^{-1}\dfrac{\sqrt{3}}{2}+\cos^{-1}\left(\cos \left(\pi+\dfrac{\pi}{6}\right)\right)\)

\(\rm =-\sin^{-1}\dfrac{\sqrt{3}}{2}+\cos^{-1}\left(-\cos \dfrac{\pi}{6}\right)\)

\(\rm =-\dfrac{\pi}{3}+\left(\pi-\dfrac{\pi}{6}\right)\)

\(\rm =\dfrac{\pi}{2}\).

Find the value of sin-1 (sin x), x∈ [-π/2, π/2] 

  1. x
  2. -x
  3. π + x
  4. None of the above

Answer (Detailed Solution Below)

Option 1 : x

Principal Values Question 11 Detailed Solution

Download Solution PDF

Explanation:

Principal Values of Inverse Trigonometric Functions:

Function Domain Range of Principal Value
sin-1 x [-1, 1] [-π/2, π/2]
cos-1 x [-1, 1] [0, π]
csc-1 x R - (-1, 1) [-π/2, π/2] - {0}
sec-1 x R - (-1, 1) [0, π] - {π/2}
tan-1 x R (-π/2, π/2)
cot-1 x R (0, π)

 

Given: x∈ [-π/2, π/2] 

sin-1 (sin x) = x

The principle value of \(\rm \tan^{-1}\left[\cos\left(-{\pi\over2}\right)\right]\)

  1. 0
  2. π/2
  3. -π/2
  4. 1

Answer (Detailed Solution Below)

Option 1 : 0

Principal Values Question 12 Detailed Solution

Download Solution PDF

Concept:

cos (-θ) = cos θ 

\(\cos\left({\pi\over2}\right) = 0\)

 

Calculation:

x = \(\rm \tan^{-1}\left[\cos\left(-{\pi\over2}\right)\right]\)

x = \(\rm \tan^{-1}\left[\cos\left({\pi\over2}\right)\right]\)

x = \(\rm \tan^{-1}\left[0\right]\)

∵ Principle value can be ∈ \(\left[-{\pi\over2},{\pi\over2}\right]\)

∴ x = 0

Find the principal value of \(\rm \sin^{-1} \left ( \frac {-1}{\sqrt 2}\right)\).

  1. 135° 
  2. 45°
  3. -45°
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : -45°

Principal Values Question 13 Detailed Solution

Download Solution PDF

Concept:

Principal Values of Inverse Trigonometric Functions:

Function Domain Range of Principal Value
sin-1 x [-1, 1] [-π/2, π/2]
cos-1 x [-1, 1] [0, π]
csc-1 x R - (-1, 1) [-π/2, π/2] - {0}
sec-1 x R - (-1, 1) [0, π] - {π/2}
tan-1 x R (-π/2, π/2)
cot-1 x R (0, π)

 

Inverse Trigonometric Functions for Negative Arguments:

sin-1 (-x) - sin-1 x cos-1 (-x) π - cos-1 x
cosec-1 (-x) - cosec-1 x sec-1 (-x) π - sec-1 x
tan-1 (-x) - tan-1 x cot-1 (-x) π - cot-1 x

 

Calculation: 

As we know sin-1 (-x) = - sin-1 x

So,  \(\rm \sin^{-1} \left ( \frac {-1}{\sqrt 2}\right) = - \sin^{-1} \left ( \frac {1}{\sqrt 2}\right)\)

Let \( \sin^{-1} \left ( \frac {1}{\sqrt 2}\right) \) = θ 

⇒ sin θ = \(\frac{1}{\sqrt 2}\) = sin 45° 

∴ θ = 45° 

Hence, \(\rm \sin^{-1} \left ( \frac {-1}{\sqrt 2}\right)\) = -θ = -45°

The principal value of sin-1 2x lies in the interval

  1. \(\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)\)
  2. \(\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\)
  3. \(\left[ {0,\frac{\pi }{2}} \right]\)
  4. \(\left[ {\frac{{ - \pi }}{6},\frac{\pi }{6}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\)

Principal Values Question 14 Detailed Solution

Download Solution PDF

Concept:

Principal Values of Inverse Trigonometric Functions:

Function Domain Range of Principal Value
sin-1 x [-1, 1] [-π/2, π/2]
cos-1 x [-1, 1] [0, π]
cosec-1 x R - (-1, 1) [-π/2, π/2] - {0}
sec-1 x R - (-1, 1) [0, π] - {π/2}
tan-1 x R (-π/2, π/2)
cot-1 x R (0, π)

 

Calculation:

Let us assume sin-1 2x = y

⇒ 2x = sin y

We know that maximum and minimum values of sine function lie between -1 to 1

⇒ -1 ≤ sin y ≤ 1

⇒ -1 ≤ 2x ≤ 1

Apply sin-1 for the above inequality

⇒ sin-1 (-1) ≤ sin-1 2x ≤ sin-1 (1)

⇒ (-π /2) ≤ sin-1 2x ≤ (π /2)

Hence, the principal value of sin-1 2x lies in the interval \(\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\)

The value of \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\) is

  1. \(\frac{25}{24}\)
  2. \(\frac{25}{7}\)
  3. \(\frac{24}{25}\)
  4. \(\frac{7}{24}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{7}{24}\)

Principal Values Question 15 Detailed Solution

Download Solution PDF

Explanation:

If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]

cot (cot-1 x) =x for x ∈ R

We have, \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)

Let \(\cos^{−1}\left(\frac{7}{25}\right)\)= θ

⇒ cosθ = 7/25

⇒ sinθ = 24/25

⇒ cotθ = 7/24

∴  \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)

= cotθ 

= 7/24

Get Free Access Now
Hot Links: teen patti sweet teen patti club apk teen patti lucky