Inverse Trigonometric Functions MCQ Quiz - Objective Question with Answer for Inverse Trigonometric Functions - Download Free PDF

Last updated on Apr 22, 2025

Inverse Trigonometric Functions MCQ are crucial for evaluating one's understanding of these mathematical functions that yield angles based on trigonometric ratios. Inverse trigonometric functions enable the determination of angles given the values of trigonometric ratios. Inverse Trigonometric Functions MCQ on this topic assess learners' knowledge of inverse sine, cosine, tangent, and their properties. By answering such Inverse Trigonometric Functions MCQ, individuals can enhance their understanding of the relationship between trigonometric functions and their inverses, the principal value ranges, and the application of inverse trigonometric functions in solving trigonometric equations and real-world problems.

Latest Inverse Trigonometric Functions MCQ Objective Questions

Inverse Trigonometric Functions Question 1:

Find value of cot (tan-1 x + cot-1 x)

  1. 1
  2. -1
  3. 0
  4. ∞ 
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 0

Inverse Trigonometric Functions Question 1 Detailed Solution

Concept:

tan-1 x + cot-1 x = \(\rm \frac {\pi}{2}\)

Calculation:

As we know tan-1 x + cot-1 x = \(\rm \frac {\pi}{2}\)

∴ cot (tan-1 x + cot-1 x) = cot \(\rm \frac {\pi}{2}\)= 0

Inverse Trigonometric Functions Question 2:

\(f(x)=1+2\sin x+3\cos ^2x, \left(0\le x\le \frac{2x}{3}\right)\) is

  1. Min. at x = 90°
  2. Min. at x = sin-1(1/√3)
  3. Min. at x = 30°
  4. Min. at x = sin-1(1/3)
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : Min. at x = 90°

Inverse Trigonometric Functions Question 2 Detailed Solution

Concept:

The maxima and minima of any function f(x) can be calculated by keeping it's first derivative as zero.

Now to find out whether it is a maxima or minima, we take it's double derivative now if the value is negative then it is a maxima and if it is positive it is a minima. For value equals to zero, it is unstable.

Solution: Given function,

\(f(x)=1+2\sin x+3\cos ^2x, \left(0\le x\le \frac{2x}{3}\right) \)

\(f^{\prime}(x)=2\cos x-6\sin x cos x\\ f^{\prime}(x)=0 \\ 2\cos x-6\sin x cos x=0 \\ 2\cos x(1-3\sin x)=0 \\ \implies \text{either} \cos x=0 \ \text{or} \ (1-3\sin x)=0 \\ x=\sin ^{-1}(\frac{1}{3}),\frac{\pi}{2}\)

To find out whether it is a maxima or minima, we take the double derivative.

\(f^{\prime \prime}(x)=-2\sin x-6 \cos 2x\\ \text{for value} \frac{\pi}{2},\\ f^{\prime \prime}(x)=-2\sin ( \frac{\pi}{2})-6 \cos (2 \cdot \frac{\pi}{2})\\ f^{\prime \prime}(x)=-2\sin ( \frac{\pi}{2})-6 \cos \pi\\ f^{\prime \prime}(x)=-2+6 =4\)

Hence, 4>0. It is minima at x = 90°.

The correct answer is option 1.

Inverse Trigonometric Functions Question 3:

The principal value of \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\) is

  1. \(−\frac{2\pi}{3}\)
  2. \(−\frac{\pi}{3}\)
  3. \(\frac{4\pi}{3}\)
  4. \(\frac{5\pi}{3}\)
  5. \(\frac{2\pi}{3}\)

Answer (Detailed Solution Below)

Option 2 : \(−\frac{\pi}{3}\)

Inverse Trigonometric Functions Question 3 Detailed Solution

Explanation:

If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]

sin (sin-1 x) =x for -π/2 ≤ x ≤ π/2

We have, \(\sin^{−1}\left(\frac{−\sqrt{3}}{2}\right)\)

= sin-1(sin( \(\frac{-\pi}{3}\)))  ----- Since \(\frac{-\pi}{3}\) ∈ [\(\frac{-\pi}{2}\), \(\frac{\pi}{2}\)]

∴ sin-1(sin( \(\frac{-\sqrt{3}}{2}\))) = \(\frac{-\pi}{3}\)

Additional InformationPrincipal Values of Inverse Trigonometric Functions:

Function

Domain

Range of Principal Value

sin-1 x

[-1, 1]

[-π/2, π/2]

cos-1 x

[-1, 1]

[0, π]

csc-1 x

R - (-1, 1)

[-π/2, π/2] - {0}

sec-1 x

R - (-1, 1)

[0, π] - {π/2}

tan-1 x

R

(-π/2, π/2)

cot-1 x

R

(0, π)

Inverse Trigonometric Functions Question 4:

If (tan(cos-1x) = sin(cot-1\(\frac{1}{2}\)), then x is equal to

  1. \(\frac{5}{3}\)
  2. \(\frac{\sqrt{5}}{3}\)
  3. \(\frac{5}{\sqrt{3}}\)
  4. None of these
  5. 6

Answer (Detailed Solution Below)

Option 2 : \(\frac{\sqrt{5}}{3}\)

Inverse Trigonometric Functions Question 4 Detailed Solution

Calculation:

Let, cot-1\(\frac{1}{2}\) = ϕ 

⇒ cot ϕ = \(\frac{1}{2}\)

⇒ sin ϕ = \(\frac{1}{\sqrt{1+\cot^2\phi}}\) = \(\frac{2}{\sqrt{5}}\)

Let cos-1x = θ 

⇒ sec θ = \(\frac{1}{x}\)

⇒ tan θ = \(\sqrt{\sec^2\theta-1}\)

⇒ tan θ = \(\sqrt{\frac{1}{x^2}-1}\)

⇒ tan θ = \(\frac{\sqrt{1-x^2}}{x}\)

Now, (tan(cos-1x) = sin(cot-1\(\frac{1}{2}\))

⇒ (tan(tan-1\(\frac{\sqrt{1-x^2}}{x}\)) = sin(sin-1\(\frac{2}{\sqrt{5}}\))

⇒ \(\frac{\sqrt{1-x^2}}{x}\) = \(\frac{2}{\sqrt{5}}\)

⇒ \(\sqrt{(1-x^2)5}\) = 2x

Squaring both sides, we get:

(1 - x2)5 = 4x2

⇒ 9x2 = 5

⇒ x = \(\frac{\sqrt{5}}{3}\) (∵ x > 0)

∴ The value of x is \(\frac{\sqrt{5}}{3}\).

The correct answer is Option 2.

Inverse Trigonometric Functions Question 5:

Principal value of \(\rm \cos^{-1}(\cos \left(\frac{5\pi}{4}\right))\) is

  1. \(\frac{-\pi}{4}\)
  2. \(\frac{3\pi}{4}\)
  3. \(\frac{7\pi}{4}\)
  4. \(\frac{\pi}{4}\)
  5. 0

Answer (Detailed Solution Below)

Option 2 : \(\frac{3\pi}{4}\)

Inverse Trigonometric Functions Question 5 Detailed Solution

Explanation:

\(\rm \cos^{-1}(\cos \left(\frac{5π}{4}\right))\)

\(\rm \cos^{-1}(\cos \left(π+\frac{π}{4}\right))\)

\(\rm \cos^{-1}(-\cos \left(\frac{π}{4}\right))\) (as cos(π + x) = -cos x)

\(\rm \cos^{-1}(\cos \left(π-\frac{π}{4}\right))\) (as cos(π - x) = -cos x)

\(\rm \cos^{-1}(\cos \left(\frac{3π}{4}\right))\)

\(\frac{3π}{4}\) (cos-1(cos x) = x if 0 ≤ x ≤ π)

Option (2) is true. 

Top Inverse Trigonometric Functions MCQ Objective Questions

If 4 tan-1 x + cot‑1 x = π, then x equals:

  1. 1
  2. -1
  3. √3
  4. \(\dfrac{1}{\sqrt3}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{1}{\sqrt3}\)

Inverse Trigonometric Functions Question 6 Detailed Solution

Download Solution PDF

Concept:

\(\rm \cot \theta = \tan \left(\dfrac{\pi}{2}-\theta\right)\)​.

\(\tan^{-1} x = \dfrac{\pi}{2}-\cot^{-1} x\)

Calculation:

4 tan-1 x + cot‑1 x = π

\( 4\tan^{-1}x+\left(\dfrac{\pi}{2}-\tan^{-1}x\right)=\pi\)

\(3\tan^{-1}x=\pi-\dfrac{\pi}{2}=\dfrac{\pi}{2}\)

\( \tan^{-1}x=\dfrac{\pi}{6}\)

\(x=\tan\dfrac{\pi}{6}=\dfrac{1}{\sqrt3}\).

\(\rm cot^{-1}{1\over3} - 2 \tan^{-1}{2\over3} = ?\)

  1. 1
  2. -1
  3. \(\rm \cot^{-1}{41\over3}\)
  4. \(\rm \tan^{-1}{41\over3}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \cot^{-1}{41\over3}\)

Inverse Trigonometric Functions Question 7 Detailed Solution

Download Solution PDF

Concept:

  • \(\rm \tan^{-1}x + \tan^{-1}y=\tan^{-1}{x+y\over 1-xy}\)
  • \(\rm cot^{-1}{x} = {\pi\over2}- \tan^{-1}{x}\)
  • \(\rm 2tan^{-1}\ x =tan^{-1} ({\frac {2x}{1\ -\ x^2}})\)


Calculation:

S = \(\rm cot^{-1}{1\over3} - 2 \tan^{-1}{2\over3} \)

S = \(\rm \left[{\pi\over2}-\tan^{-1}{1\over3}\right] - \tan^{-1}{{2\times \frac{2}{3}}\over1-{(\frac{2}{3})^2}}\)

S = \(\rm \left[{\pi\over2}-\tan^{-1}{1\over3}\right] - \tan^{-1}{{\frac{4}{3}}\over1-{\frac{4}{9}}}\)

S = \(\rm {\pi\over2}-\tan^{-1}{1\over3} - \tan^{-1}{\frac{12}{5}}\)

S = \(\rm {\pi\over2}- \left[ \tan^{-1}{12\over5}+\tan^{-1}{1\over3}\right]\)

S = \(\rm {\pi\over2}- \left[ \tan^{-1}{{12\over5}+{1\over3}\over1-{12\over5}\times{1\over3}}\right]\)

S = \(\rm {\pi\over2}- \left[ \tan^{-1}{41\over3}\right]\)

S = \(\rm \cot^{-1}{41\over3}\)

The domain of sin-1 4x is:

  1. [0, 1]
  2. [-1, 1]
  3. \(\rm \left[-\dfrac{1}{4},\dfrac{1}{4}\right]\)
  4. [-3, 3]

Answer (Detailed Solution Below)

Option 3 : \(\rm \left[-\dfrac{1}{4},\dfrac{1}{4}\right]\)

Inverse Trigonometric Functions Question 8 Detailed Solution

Download Solution PDF

Concept:

  • The domain of a function f(x) is the set of values of x for which the function is defined.
  • The value of sin θ always lies in the interval [-1, 1].
  • sin-1 (sin θ) = θ.
  • sin (sin-1 x) = x.

 

Calculation:

Let's say that sin-1 4x = θ.

⇒ sin (sin-1 4x) = sin θ

⇒ sin θ = 4x

Since, -1 ≤ sin θ ≤ 1

⇒ -1 ≤ 4x ≤ 1

⇒ \(\rm -\dfrac{1}{4}\leq x \leq \dfrac{1}{4}\)

⇒ x ∈ \(\rm \left[-\dfrac{1}{4},\dfrac{1}{4}\right]\)

∴ The domain of the function is the closed interval \(\rm \left[-\dfrac{1}{4},\dfrac{1}{4}\right]\).

If sin-1 x + sin-1 y = \(\rm \frac{3\pi}{4}\) , then cos-1 x + cos-1 y = ? . 

  1. -3π/4
  2. π/4 
  3. -π/4
  4. 3π/2 

Answer (Detailed Solution Below)

Option 2 : π/4 

Inverse Trigonometric Functions Question 9 Detailed Solution

Download Solution PDF

Concept:

sin-1 x + cos-1 x = \(\rm \frac{π}{2}\)  

Calculation:

sin-1 x + sin-1 y = \(\rm \frac{3π}{4}\) 

⇒ \(\rm \left ( \frac{π}{2} -cos^{-1}x\right ) + \left ( \frac{π}{2}- cos^{-1}y\right ) = \frac{3π}{4}\) 

⇒ π - ( cos-1 x + cos-1 y ) = \(\rm \frac{3π}{4}\)

cos-1 x + cos-1 y = \(\rm\frac{\pi}{4}\) 

The correct option is 2.

Find the value of \({\sin ^{ - 1}}\left( {\sin \frac{{4\pi }}{5}} \right)\)

  1. π/5
  2. 2π/5
  3. 4π/5 
  4. -4π/5

Answer (Detailed Solution Below)

Option 1 : π/5

Inverse Trigonometric Functions Question 10 Detailed Solution

Download Solution PDF

Concept:

\({\sin ^{ - 1}}\ (sin x) = x\) if \(x \in \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\) but if \(x{ \notin }\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\), then use \(\sin x = \sin \left( {\pi - x} \right)\) to bring the value of x inside the principle branch.

Solution:

\({\sin ^{ - 1}}\left( {\sin \frac{{4\pi }}{5}} \right)\) but \(\frac{{4\pi }}{5}\notin{ }\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\)

So, use the relation,

\(\sin \frac{{4\pi }}{5} = \sin \left( {\pi - \frac{{4\pi }}{5}} \right)\)

\(= \sin \left( {\frac{\pi }{5}} \right)\)

So,

\({\sin ^{ - 1}}\left( {\sin \frac{{4\pi }}{5}} \right) = {\sin ^{ - 1}}\left( {\sin \frac{\pi }{5}} \right)\)

\( = \frac{\pi }{5}\)

If 3 sin-1 x + cos-1 x = π, then find the value of x?

  1. 0
  2. 1/√2
  3. -1
  4. 1/2

Answer (Detailed Solution Below)

Option 2 : 1/√2

Inverse Trigonometric Functions Question 11 Detailed Solution

Download Solution PDF

Concept:

sin-1 x + cos-1 x = π/2, x ∈ [-1, 1]

Calculation:

Given:  3 sin-1 x + cos-1 x = π 

 ⇒ 3 sin-1 x + cos-1 x = 2 sin-1 x + [sin-1 x + cos-1 x] = π 

As we know that, sin-1 x + cos-1 x = π/2, x ∈ [-1, 1]

⇒  2 sin-1 x + [π /2] = π

⇒ 2 sin-1 x = π - π/2

⇒ 2 sin-1 x = π/2

⇒ sin-1 x = π/4

⇒ x = sin π/4 = 1/√2

What is the principal solutions of the equation \(\tan x=-\frac{1}{\sqrt{3}}\)?

  1. \(\frac{9 \pi}{3}, \frac{7 \pi}{3}\)
  2. \(\frac{2 \pi}{3}, \frac{2 \pi}{3}\)
  3. \(\frac{3 \pi}{6}, \frac{2 \pi}{6}\)
  4. \(\frac{11 \pi}{6}, \frac{5 \pi}{6}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{11 \pi}{6}, \frac{5 \pi}{6}\)

Inverse Trigonometric Functions Question 12 Detailed Solution

Download Solution PDF

Concept:

 

The principal solutions of a trigonometric equation are those solutions that lie between 0 and 2π.

Formula:

General solution of tan(x) = tan(α) is  given as;

x = nπ + α where α ∈ (-π/2 , π/2) and n ∈ Z.

Calculation:

Given, \(\tan x=-\frac{1}{\sqrt{3}}\)

⇒ tan(x) = tan(-π/6)

∴ α = -π/6

⇒ x = nπ + (-π/6) , n ∈ Z

Putting n = 1 and 2, we get - 

x = 5π/6 and 11π/6

What is the value of cos (2tan-1 x + 2cot-1 x) ?

  1. 0
  2. 1
  3. -1
  4. None of these

Answer (Detailed Solution Below)

Option 3 : -1

Inverse Trigonometric Functions Question 13 Detailed Solution

Download Solution PDF

Concept:

tan-1 x + cot-1 x = \(\rm \frac {π}{2}\)

 

Calculation:

To Find: Value of cos (2tan-1 x + 2cot-1 x)

cos (2tan-1 x + 2cot-1 x) = cos 2(tan-1 x + cot-1 x)

As we know, tan-1 x + cot-1 x = \(\rm \frac {π}{2}\)

cos (2tan-1 x + 2cot-1 x) = cos [2 × \(\rm \frac {π}{2}\) ]

= cos π 

= -1

In ΔABC, AB = 20 cm, BC = 21 cm and AC = 29 cm. What is the value of cot C + cosec C - 2tan A?

  1. \(\frac{3}{5}\)
  2. \(\frac{9}{20}\)
  3. \(\frac{2}{5}\)
  4. \(\frac{7}{20}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{2}{5}\)

Inverse Trigonometric Functions Question 14 Detailed Solution

Download Solution PDF

Given:

AB = 20 cm

BC = 21 cm 

AC = 29 cm

Concept used:

Pythagoras' theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides.

Calculation:

SSC CGL 2017 18th feb 50 1 Hindi hrev images Q13

Using pythagoras theorem,

AC2 = AB2 + BC2

⇒ 292 = 202 + 212

ΔABC is a right angled triangle.

⇒ cot C = BC/AB = 21/20

⇒ cosec C = AC/AB = 29/20

⇒ tan A = BC/AB = 21/20

cot C + cosec C - 2tan A = 21/20 + 29/20 - 2 × 21/20

⇒ 8/20

⇒ 2/5

So, the value of cot C + cosec C - 2tan A = 2/5

\(\rm tan^{-1}x+cot^{-1}x=\frac{\pi}{2}\) holds, when

  1. x ∈ R
  2. x ∈ R - (-1, 1) only
  3. x ∈ R - {0} only
  4. x ∈ R - [-1, 1] only

Answer (Detailed Solution Below)

Option 1 : x ∈ R

Inverse Trigonometric Functions Question 15 Detailed Solution

Download Solution PDF

Concept:

\(\rm tan^{-1}(x)+tan^{-1}({y})\) = \(\rm tan^{-1}\frac{x+y}{1-x\times y}\)

\(\rm cot^{-1}x=\) \(\rm tan^{-1}({1\over x})\)

Calculation:

Given, \(\rm tan^{-1}x+cot^{-1}x=\frac{\pi}{2}\)

⇒ \(\rm tan^{-1}(x)+tan^{-1}({1\over x})=\frac{\pi}{2}\)

⇒ \(\rm tan^{-1}(x)+tan^{-1}({1\over x})=\frac{\pi}{2}\)

⇒ \(\rm tan^{-1}\frac{x+\frac{1}{x}}{1-x\times \frac{1}{x}} = \frac{\pi}{2}\)

⇒ \(\rm tan^{-1}\frac{x+\frac{1}{x}}{0} = \frac{\pi}{2}\)

⇒ \(\rm tan^{-1}\frac{x+\frac{1}{x}}{0} = \frac{\pi}{2}\)

⇒ \(\rm tan^{-1}({\infty}) = \frac{\pi}{2}\)

This is true for all x ∈ R

Get Free Access Now
Hot Links: teen patti rummy online teen patti real money teen patti master 2025