Maximum or Minimum value MCQ Quiz - Objective Question with Answer for Maximum or Minimum value - Download Free PDF

Last updated on Jun 14, 2025

Latest Maximum or Minimum value MCQ Objective Questions

Maximum or Minimum value Question 1:

Comprehension:

Consider the following for the two (02) items that follow: Let .

What is the maximum value of p?

  1. 1
  2. \(\sqrt{2}\)
  3. \(\sqrt{3}\)
  4. 2

Answer (Detailed Solution Below)

Option 2 : \(\sqrt{2}\)

Maximum or Minimum value Question 1 Detailed Solution

Calculation:

Given,

The expression for p  is:

\( p = |\sin \alpha - \sin(\alpha - 90^\circ)| \)

Using the identity for \(\sin(\alpha - 90^\circ) \)

\( \sin(\alpha - 90^\circ) = \cos \alpha \)

Substituting this into the expression for p :

\( p = |\sin \alpha - \cos \alpha| \)

The expression  \(|\sin \alpha - \cos \alpha|\)  achieves its maximum value when the difference between \(\sin \alpha \) and \(\cos \alpha \) is largest.

We can rewrite \(\sin \alpha - \cos \alpha \) as:

\( \sin \alpha - \cos \alpha = \sqrt{2} \left( \sin \left( \alpha - 45^\circ \right) \right) \)

Since \(\sin(\alpha - 45^\circ) \) has a maximum value of 1, the maximum value of \(\sqrt{2} \left( \sin(\alpha - 45^\circ) \right) \) is:

\( \sqrt{2} \)

 

Hence, the correct answer is Option 2

Maximum or Minimum value Question 2:

Comprehension:

Consider the following for the two (02) items that follow: Let .

What is the minimum value of p?

  1. 0
  2. 1/2
  3. \(1/\sqrt{2}\)
  4. 1

Answer (Detailed Solution Below)

Option 1 : 0

Maximum or Minimum value Question 2 Detailed Solution

Calculation:

Given,

We are given the expression:

\( p = | \sin \alpha - \sin(\alpha - 90^\circ) | \)

Using the identity for sine of a difference:

\( \sin(\alpha - 90^\circ) = \cos \alpha \)

Substituting this identity into the expression for p :

\( p = | \sin \alpha - \cos \alpha | \)

The minimum value of \( | \sin \alpha - \cos \alpha | \) occurs when \(\sin \alpha = \cos \alpha \), which happens when\(\alpha = 45^\circ \). At this point:

\( \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}} \)

Therefore, at \(\alpha = 45^\circ \), the difference between \(\sin \alpha \) and \(\cos \alpha \) is 0, so:

\( p = 0 \)

∴ The minimum value of p  is 0.

Hence, the correct answer is option (a) 0.

Maximum or Minimum value Question 3:

The maximum value of \(3 \cos \theta + 5 \sin \left( \theta - \dfrac { \pi } { 6 } \right)\) for any real value of \(\theta\) is :

  1. \(\sqrt { 19 }\)
  2. \(\dfrac { \sqrt { 79 } } { 2 }\)
  3. \(\sqrt { 31 }\)
  4. \(\sqrt { 34 }\)

Answer (Detailed Solution Below)

Option 1 : \(\sqrt { 19 }\)

Maximum or Minimum value Question 3 Detailed Solution

\(\mathrm { y } = 3 \cos \theta + 5 \left( \sin \theta \dfrac { \sqrt { 3 } } { 2 } - \cos \theta \dfrac { 1 } { 2 } \right)\)

\(\dfrac { 5 \sqrt { 3 } } { 2 } \sin \theta + \dfrac { 1 } { 2 } \cos \theta\)

\(y _ { \max } = \sqrt { \dfrac { 75 } { 4 } + \dfrac { 1 } { 4 } } = \sqrt { 19 }\)

Maximum or Minimum value Question 4:

Where does the function f(x) = \(\displaystyle\sum_{j=1}^7\)(x − j)2 attain its minimum value ?

  1. x = 3.5
  2. x = 4
  3. x = 4.5
  4. x = 5

Answer (Detailed Solution Below)

Option 2 : x = 4

Maximum or Minimum value Question 4 Detailed Solution

Concept:

  • 1 + 2 + 3 + ... + n = \(n(n+1) \over 2\)
  • 12 + 22 + 32 + ...+ n2 = \(n(n+1)(2n+1) \over 6\)
  • f(x) is minimum at x = a if f '(a) = 0 and f "(a) > 0

Calculation:

Given, f(x) = \(\displaystyle\sum_{j=1}^7\)(x − j)2 

⇒ f(x) = (x − 1)2 + (x − 2)2 + (x − 3)2 + (x − 4)2 + (x − 5)2 + (x − 6)2 + (x − 7)2 

⇒ f(x) = (x2 − 2x + 12) + (x2 − 4x + 22) + (x2 − 6x + 32) + (x2 − 8x + 42) + (x2 − 10x + 52) + (x2 − 12x + 62) +(x2 − 14x + 72)

⇒ f(x) = 7x2 - 2(1 + 2 + 3 + 4 + 5 + 6 + 7)x + (12 + 22 + 32 + 42 + 52 + 62 + 72)

⇒ f(x) = 7x2 - 2(\(7(7+1) \over 2\))x + (\(7(7+1)(2(7)+1) \over 6\))

⇒ f(x) = 7x2 - 2(7(4))x + (\(7(8)(15) \over 6\))

⇒ f(x) = 7x2 - 56x + 140

⇒ f '(x) = 14x - 56 

⇒ f "(x) = 14

So f '(x) = 0 at x = 4 and f "(4) > 0

⇒ f(x) is minimum at x = 4

∴ The correct option is (2).

Maximum or Minimum value Question 5:

Under which one of the following conditions does the function f(x) = (p sec x)2 + (q cosec x)2 attain minimum value ?

  1. tan2 x = \(\frac{q}{p}\)
  2. cot2 x = \(\frac{q}{p}\)
  3. tan2 x = pq
  4. cot2 x = pq

Answer (Detailed Solution Below)

Option 1 : tan2 x = \(\frac{q}{p}\)

Maximum or Minimum value Question 5 Detailed Solution

Concept:

  • 1 + tan2x = sec2
  • 1 + cot2x = cosec2x
  • f(x) is minimum at x = a, if f '(a) = 0 and f "(a) > 0
  • Chain Rule: (f(g(x))' = f '(g(x)).g'(x)
  • (f(x)g(x))' = f '(x).g(x) + f(x).g'(x)

Calculation:

Given: f(x) = (p sec x)2 + (q cosec x)2 

⇒ f(x) = p2 sec2x + q2 cosec2x

⇒ f(x) = p2 + p2tan2x + q2 + q2cot2x

⇒ f '(x) = 0 + p2(2tan x sec2x) + q2(2cot x (-cosec2x)

⇒ f '(x) = 2p2tan x sec2x - 2q2cot x cosec2​x __(i)

Again differentiating (i),

⇒ f ''(x) = 2p2((tan x)' sec2x + tan x (sec2x)') - 2q2((cot x)' cosec2​x + cot x (cosec2x)')

⇒ f ''(x) = 2p2(sec4x + tan x ( 2sec x tan x sec x)) - 2q2(-cosec4​x + cot x (-2cosec x cosec x cot x))

⇒ f ''(x) = 2p2(sec4x + 2tan2x sec2x) + 2q2(cosec4​x + 2cot2x cosec2x )

⇒ f :"(x) > 0 for every x {∵ every term is of even power}

And from (i),

f ' (x) = 0 when 2p2tan x sec2x - 2q2cot x cosec2​x = 0

⇒ p2tan x sec2x = q2cot x cosec2​x

⇒ \({\tan x \sec^2 x \over \cot x\ \text {cosec}^2 x} = {q^2 \over p^2}\)

⇒ \({\tan^2 x \sin^2 x \over \text {cos}^2 x} = {q^2 \over p^2}\)

⇒ \({\tan^4 x } = {q^2 \over p^2}\)

⇒ tan2 x = \(\frac{q}{p}\)

so when tan2 x = \(\frac{q}{p}\), f "(x) = 0 and f "(x) > 0

⇒ f(x) is minimum when tan2 x = \(\frac{q}{p}\)

∴ The correct option is (1).

Top Maximum or Minimum value MCQ Objective Questions

What is the maximum value of the function f(x) = 4 sin2 x + 1?

  1. 5
  2. 3
  3. 2
  4. 1

Answer (Detailed Solution Below)

Option 1 : 5

Maximum or Minimum value Question 6 Detailed Solution

Download Solution PDF

Calculation:

Given: f(x) = 4 sin2 x + 1

To find: Maximum value of f(x)

We know that, range of sin x is [-1, 1], i.e.,

-1 ≤ sin x ≤ 1

Squaring the equalities, we get,

⇒ 0 ≤ sin2 x ≤ 1

⇒ 0 ≤ 4sin2 x ≤ 4

⇒ 1 ≤ 4sin2 x + 1 ≤ 5

⇒ 1 ≤ f(x) ≤ 5

Hence, maximum value of f(x) is 5.

The minimum values of 1 − 4 sin x cos x is

  1. -1
  2. 1
  3. 0
  4. -3

Answer (Detailed Solution Below)

Option 1 : -1

Maximum or Minimum value Question 7 Detailed Solution

Download Solution PDF

Concept:

-1 ≤ sin θ ≤ 1

sin 2 θ = 2 sin θ cos θ

Calculation

We have to find the minimum value of 1 − 4 sin x cos x

Let f(x) = 1 − 4 sin x cos x

= 1 – 2 × (2 sin x cos x)

= 1 – 2 sin 2x                   (∵sin 2θ = 2 sin θ cos θ)

For minimum value of f(x), sin 2x should be maximum

As we know that,

Maximum value of sin θ is 1, so maximum value of sin 2x is 1

Therefore, Minimum value of f(x) = 1 – 2 × 1 = -1

The maximum values of 1 − 4 sin2 x cos2 x is

  1. -1
  2. 1
  3. 0
  4. -3

Answer (Detailed Solution Below)

Option 2 : 1

Maximum or Minimum value Question 8 Detailed Solution

Download Solution PDF

Concept:

-1 ≤ sin θ ≤ 1

0 ≤ sin2 θ ≤ 1

sin 2 θ = 2 sin θ cos θ

Calculation

We have to find the maximum value of 1 − 4 sin2 x cos2 x

Let f(x) = 1 − 4 sin2 x cos2 x

= 1 – (2 sin x cos x)2

= 1 – sin2 2x                   (∵sin 2θ = 2 sin θ cos θ)

For maximum value of f(x), sin 2x should be minimum

As we know that,

Minimum value of sin2 θ is 0

Therefore, Maximum value of f(x) = 1 – 0 = 1

Find the maximum value of 15sin θ + 20cos θ. 

  1. 25
  2. 35
  3. 30
  4. 5

Answer (Detailed Solution Below)

Option 1 : 25

Maximum or Minimum value Question 9 Detailed Solution

Download Solution PDF

 

Concept:

If the trigonometric ratio is in the form of 'asin θ + bcos θ'

Then the maximum value = \(\rm \sqrt {a^2+b^2}\)

And the minimum value = - \(\rm \sqrt {a^2+b^2}\)

Calculation:

15sin θ + 20cos θ

Here a = 15  and b = 20

Then the maximum value = \(\rm \sqrt {{15}^2+20^2}\)

\(\sqrt{225+400}\)

= √(625)

= 25 

∴ The maximum value of 15sin θ + 20cos θ is 25.

The minimum value of 4 cosθ + 3 is

  1. -3
  2. -1
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 2 : -1

Maximum or Minimum value Question 10 Detailed Solution

Download Solution PDF

Concept:

The minimum value of cos θ is –1 when θ = 180°. So, the range of values of cos θ is – 1 ≤ cos θ ≤ 1.

Calculation:

Since the minimum value of cosθ is -1.

So, the minimum value of 4 cosθ + 3 = 4(-1) + 3 

⇒ -4 + 3

⇒ -1

Hence, the minimum value of 4 cosθ + 3 is -1.

The maximum value of sin4 x + cos4 x is

  1. 1
  2. 1/2
  3. 0
  4. 3/2

Answer (Detailed Solution Below)

Option 1 : 1

Maximum or Minimum value Question 11 Detailed Solution

Download Solution PDF

Concept:

a2 + b2 + 2ab = (a + b)2

\(\rm sin^2 x + \cos^2 x =1\)

2 sin x cos x = sin 2x

sin2 x lies between [0, 1] ⇔  0 ≤ sin2 x ≤ 1

 

Calculation:

To Find: maximum value of sin4 x + cos4 x

\(\text {Let f(x)}=\rm \sin^4 x + \cos^4 x\\= (sin^2 x)^2 + (\cos^2 x)^2\\= (sin^2 x)^2 + (\cos^2 x)^2+ 2sin^2 x \cos^2 x- 2sin^2 x \cos^2 x\)

\(\rm =(\sin^2 x + \cos^2 x)^2 - 2sin^2 x \cos^2 x\)            (∵ a2 + b2 + 2ab = (a + b)2)

\(\rm =1 - \frac{1}{2}\times 4sin^2 x \cos^2 x\)                              \(\rm (∵ sin^2 x + \cos^2 x =1)\)

\(\rm =1 - \frac{1}{2}\times (2\sin x \cos x)^2\)

\(\rm =1 - \frac{1}{2}\times \sin^2 2x\)                                        (∵ 2 sin x cos x = sin 2x)

As we know sin2 x lies between [0, 1]

So 0 ≤ sin2 2x ≤ 1

We need to take the minimum value of sin x as there is a minus sign in front of the sine term.

So we need to take it as zero.

∴ Maximum value of f(x) = 1 - 0 = 1

What is the maximum value of 7cos2θ + 5sin2θ 

  1. 12
  2. 7
  3. 5
  4. 2

Answer (Detailed Solution Below)

Option 2 : 7

Maximum or Minimum value Question 12 Detailed Solution

Download Solution PDF

Calculation:

Let f(θ) = 7cos2θ + 5sin2θ 

= 2cos2θ + 5cos2θ + 5sin2θ 

= 2cos2θ + 5(cos2θ + sin2θ)

= 2cos2θ + 5                        [∵ cos2θ + sin2θ = 1]

As we know, 0 ≤ cos2θ ≤ 1

⇒  0 ≤ 2cos2θ ≤ 2

⇒  0 + 5 ≤ 2cos2θ + 5 ≤ 2 + 5

⇒ 5 ≤ 2cos2θ + 5 ≤ 7

⇒ 5 ≤ f(θ) ≤ 7

So, Maximum value of function is 7.

 

Alternate Method

Concept:

If acos2θ + bsin2θ  where, a > b

a will be the maximum value and b will be the minimum value

Calculation:

7cos2θ + 5sin2θ 

According to concept 

acos2θ + bsin2θ  where, a > b

On comparing

⇒ a = 7, b = 5 where, 7 > 5

∴ maximum value of 7cos2θ + 5sin2θ is 7

What is the maximum value of sin x ⋅ cos x ?

  1. 2
  2. 1
  3. \(\dfrac{1}{2}\)
  4. \(2\sqrt{2}\)

Answer (Detailed Solution Below)

Option 3 : \(\dfrac{1}{2}\)

Maximum or Minimum value Question 13 Detailed Solution

Download Solution PDF

Concept:

Maximum value of sin x is 1

Maximum value of cos x is 1

sin 2x = 2 sin x cos x

 

Calculation:

To Find: maximum value of sin x ⋅ cos x

Let f(x) = sin x ⋅ cos x

\(\rm = \dfrac{1}{2} \times (2\sin x \times \cos x) \\ = \dfrac{1}{2} \sin 2x\)

As we know, the maximum value of sin x is 1

Therefore the maximum value of sin 2x is 1

Hence maximum value of f(x) is \(\dfrac{1}{2} \times 1 = \dfrac{1}{2}\)

What is the maximum value of 3(sin x − cos x) + 4(cos3 x − sin3 x) ?

  1. 1
  2. \(\sqrt{2}\)
  3. \(\sqrt{3}\)
  4. 2

Answer (Detailed Solution Below)

Option 2 : \(\sqrt{2}\)

Maximum or Minimum value Question 14 Detailed Solution

Download Solution PDF

Concept:

  • sin3x = 3sinx - 4sin3x
  • cos3x = 4cos3x - 3cosx

Calculation:

f(x) = 3(sin x − cos x) + 4(cos3 x − sin3 x)

f(x) = 3sinx - 3cosx + 4cos3x - 4sin3x

f(x) = (3sinx - 4sin3x) + (4cos3x - 3cosx)

f(x) = sin3x + cos3x

f'(x) = 3cos3x - 3sin3x

Now, f'(x) = 0

⇒  3cos3x - 3sin3x = 0

⇒ cos3x - sin3x = 0

⇒ sin3x = cos3x

⇒ tan3x = 1

⇒ \(3x = \frac{\pi }{4}\)

Hence, the maximum value of given function is = \(sin\frac{\pi }{4}+cos\frac{\pi }{4}\)

\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}\)

∴ The correct option is (2)

The maximum and minimum values of (5 + sin 2x) are

  1. 7, 3
  2. 6, 4
  3. \(10,\frac{\pi }{2}\)
  4. 5, 0

Answer (Detailed Solution Below)

Option 2 : 6, 4

Maximum or Minimum value Question 15 Detailed Solution

Download Solution PDF

Concept:

Value of sin x lies between [-1, 1]

 

Calculation:

Let f(x) = (5 + sin 2x)

As we know, value of sin x lies between [-1, 1]

⇒ -1 ≤ sin 2x ≤ 1

Adding 5 in above inequality, we get

⇒ 5 -1 ≤ 5 + sin 2x ≤ 5 + 1

⇒ 4 ≤ 5 + sin 2x ≤ 6

Therefore, Maximum value of 5 + sin 2x is 6 and Minimum value of 5 + sin 2x is 4.

Get Free Access Now
Hot Links: teen patti rummy teen patti master 2024 teen patti app teen patti star login