Multiple and Sub-multiple Angles MCQ Quiz - Objective Question with Answer for Multiple and Sub-multiple Angles - Download Free PDF

Last updated on May 14, 2025

Latest Multiple and Sub-multiple Angles MCQ Objective Questions

Multiple and Sub-multiple Angles Question 1:

In a triangle cos(A+B2)=

  1. cosc2
  2. sinc2
  3. cos(AB2)
  4. sinc2
  5. 0

Answer (Detailed Solution Below)

Option 4 : sinc2

Multiple and Sub-multiple Angles Question 1 Detailed Solution

Given:

In a triangle, the relationship between angles is used where A + B + C = 180°.

Formula used:

cos(A+B2)=sin(C2), where C = 180° - (A + B).

Explanation:

In a triangle:

A + B + C = 180°

⇒ C = 180° - (A + B)

⇒ C2=180°(A+B)2

Now, using the complementary angle relationship:

cos(A+B2)=sin(C2)

Option 4 is the correct answer.

Multiple and Sub-multiple Angles Question 2:

In a triangle cos(A+B2)=

  1. cosc2
  2. sinc2
  3. cos(AB2)
  4. sinc2

Answer (Detailed Solution Below)

Option 4 : sinc2

Multiple and Sub-multiple Angles Question 2 Detailed Solution

Given:

In a triangle, the relationship between angles is used where A + B + C = 180°.

Formula used:

cos(A+B2)=sin(C2), where C = 180° - (A + B).

Explanation:

In a triangle:

A + B + C = 180°

⇒ C = 180° - (A + B)

⇒ C2=180°(A+B)2

Now, using the complementary angle relationship:

cos(A+B2)=sin(C2)

Option 4 is the correct answer.

Multiple and Sub-multiple Angles Question 3:

In ABC, with usual notations, if a,b,c are in A.P then acos2(C2)+ccos2(A2)=

  1. 3a2
  2. 3c2
  3. 3b2
  4. 3abc2

Answer (Detailed Solution Below)

Option 3 : 3b2

Multiple and Sub-multiple Angles Question 3 Detailed Solution

Given the lengths of the sides a,b,c are in A.P,

2b=a+c

The value of the semiperimeter of the triangle s=3b2

the value of cos2A2=s(sa)bc=3(3b2a)2c

Similarly the value of cos2C2=s(sc)ab=3(3b2c)2a

acos2C2+ccos2A2=32(3bac)=32(b)

Multiple and Sub-multiple Angles Question 4:

In ABC(ab)2cos2c2+(a+b)2sin2c2=

  1. b2
  2. c2
  3. a2
  4. a2+b2+c2

Answer (Detailed Solution Below)

Option 2 : c2

Multiple and Sub-multiple Angles Question 4 Detailed Solution

Calculation

(ab)2cos2C2+(a+b)2sin2C2 =a2+b2+2ab(sin2C2cos2C2) =a2+b2+2ab(2sin2C21)

But sinC2=(sa)(sb)ab

where s=a+b+c2

a2+b2+2ab(2sin2C21) =a2+b2+2ab((c+ba)(c+ab)2ab1) =a2+b2+c2(ba)22ab =c2

Hence option 2 is correct

Multiple and Sub-multiple Angles Question 5:

sin7x+sin5xcos7x+cos5x=

  1. tan6xsin6x
  2. tan6xcos6x
  3. sin 6x
  4. cos 6x
  5. tan 6x

Answer (Detailed Solution Below)

Option 5 : tan 6x

Multiple and Sub-multiple Angles Question 5 Detailed Solution

Concept Used:

Trigonometric identities:

sin C + sin D = 2 sin C+D2 cos CD2

cos C + cos D = 2 cos C+D2 cos CD2

tan θ = sinθcosθ

Calculation:

sin 7x+sin 5xcos 7x+cos 5x

2sin7x+5x2cos7x5x22cos7x+5x2cos7x5x2

2sin 6x cos x2cos 6x cos x

sin 6xcos 6x

⇒ tan 6x

sin 7x+sin 5xcos 7x+cos 5x = tan 6x

Hence option 5 is correct

Top Multiple and Sub-multiple Angles MCQ Objective Questions

What is cot(A2)tan(A2) equal to?

  1. tanA
  2. cotA
  3. 2tanA
  4. 2cotA

Answer (Detailed Solution Below)

Option 4 : 2cotA

Multiple and Sub-multiple Angles Question 6 Detailed Solution

Download Solution PDF

Concept:

cos 2A = cos2 A – sin2 A

sin 2A = 2 sin A × cos A

Calculation:

cot(A2)tan(A2)=cos(A2)sin(A2)sin(A2)cos(A2)=cos2(A2)sin2(A2)sin(A2)×cos(A2)

As we know that, cos 2A = cos2 A – sin2 A

cot(A2)tan(A2)=cos2(A2)sin2(A2)sin(A2)×cos(A2)=cosA12×2×sin(A2)×cos(A2)

As we know that, sin 2A = 2 sin A × cos A

cot(A2)tan(A2)=cosA12×2×sin(A2)×cos(A2)=2cosAsinA=2cotA

What is cot A + cosec A equal to?

  1. tan(A2)
  2. cot(A2)
  3. 2tan(A2)
  4. 2cot(A2)

Answer (Detailed Solution Below)

Option 2 : cot(A2)

Multiple and Sub-multiple Angles Question 7 Detailed Solution

Download Solution PDF

Concept:

cos 2A = cos2 A - sin2 A = 2 cos2 A - 1

sin 2A = 2 sin A × cos A

Calculation:

cotA+cosec A=cosAsinA+1sinA

cotA+cosec A=1+cosAsinA

As we know that,

cos 2A = cos2 A - sin2 A = 2 cos2 A - 1

cotA+cosec A=1+cosAsinA=2×cos2(A2)sinA

As we know that,

sin 2A = 2 sin A × cos A

cotA+cosec A=1+cosAsinA

=2×cos2(A2)sinA=2×cos2(A2)2×cos(A2)×sin(A2)=cot(A2)

∴ The value of cot A + cosec A is cot(A2)

Find the value of sin 75° 

  1. 3122
  2. 3+122
  3. 312
  4. 3+12

Answer (Detailed Solution Below)

Option 2 : 3+122

Multiple and Sub-multiple Angles Question 8 Detailed Solution

Download Solution PDF

Concept:

sin (x + y) = sin x cos y + cos x sin y

sin (x - y) = sin x cos y - cos x sin y

Calculation:

sin 75°

= sin (45° + 30°)

= sin 45° cos 30° + cos 45° sin 30° 

12×32+12×12

3+122

If sin α + cos α = p, then what is cos2 (2α) equal to?

  1. p2
  2. p2 - 1
  3. p2(2- p2)
  4. p2 + 1

Answer (Detailed Solution Below)

Option 3 : p2(2- p2)

Multiple and Sub-multiple Angles Question 9 Detailed Solution

Download Solution PDF

Concept:

sin2 x + cos2 x = 1

sin 2x = 2 sin x cos x

Calculation:

Given: sin α + cos α = p

By squaring both the sides, we get

⇒ sin2 α + cos2 α + 2 sin α cos α = p2

As we know that, sin2 x + cos2 x = 1 and sin 2x = 2 sin x cos x

⇒ 1 + sin 2α = p2

⇒ sin 2α = p2 – 1

As we can write cos2 2α = 1 – sin2

⇒ cos2 2α = 1 – (p2 – 1)2

∴ The value of cos2 2α is p2 (2 – p2).

Find the value of cot(2212)

  1. 1 + √2
  2. 1 - √2
  3. 2 + √2
  4. 2 - √2

Answer (Detailed Solution Below)

Option 1 : 1 + √2

Multiple and Sub-multiple Angles Question 10 Detailed Solution

Download Solution PDF

Concept:

  • cos 2A = cos2 A – sin2 A = 1 – 2 sin2 A = 2 cos2 A – 1
  • sinA2=±1cosA2
  • cosA2=±1+cosA2


Calculation:

As we know that, cot x = cos x / sin x

cot(2212)=cos(2212)sin(2212)

As we know that, sinA2=±1cosA2

sin(452)=±1cos(45)2

As we know that, 0° < A / 2 < 90° where all trigonometric ratios are positive.

sin(452)=2122      -------(1)

As we know that, cosA2=±1+cosA2

cos(452)=±1+cos(45)2      -------(2)

As we know that, 0° < A / 2 < 90° where all trigonometric ratio’s are positive.

cos(452)=2+122

So, from equation (1) and (2), we get

cot(2212)=2+1222122=1+2

2 + 12  1

Rationalization above the equation

2 + 12  1×2 + 12 + 1

(2 + 1)2(2)2 (1)2       (∵ a2 - b2 = (a + b)(a - b)

(2 + 1)22 1=1+2

The value of 3 cosec 20° - sec 20° is equal to?

  1. 4
  2. 2
  3. 1
  4. -4

Answer (Detailed Solution Below)

Option 1 : 4

Multiple and Sub-multiple Angles Question 11 Detailed Solution

Download Solution PDF

CONCEPT:

Trigonometric Identities:

  • cosecθ=1sinθ
  • secθ=1cosθ
  • cos30=sin60=32
  • cos60=sin30=12
  • (cos A× cos B) – (sin A × sin B) = cos(A + B)
  • 2 × sin A × cos A = sin (2A)
  • sin (90 - θ) = cos θ

 

CALCULATION:

Given that: √3 cosec 20° – sec 20°

As we know that, cosec θ = 1/ sin θ and sec θ = 1/ cos θ

3sin201cos20

2{32sin2012cos20}

As we know that, cos 30° = √3 / 2, sin 30° = ½

2{cos30sin20sin30cos20}

2{cos30cos20sin30sin20sin20cos20}

As we know that, (cos A × cos B) – (sin A × sin B) = cos(A + B)

2{cos(50)sin20cos20}

2×2{cos(50)2×sin20cos20}

As we know that, 2 × sin A × cos A = sin (2A)

4{cos(50)sin40}

4{cos(50)sin(9050)}

As we know that, sin (90 - θ) = cos θ

4{cos(50)cos50}

⇒ 4

sin2 6x – sin2 4x = 

  1. sin 2x cos10x
  2. sin 2x sin 8x
  3. sin 2x sin 10x
  4. cos 2x cos 10x

Answer (Detailed Solution Below)

Option 3 : sin 2x sin 10x

Multiple and Sub-multiple Angles Question 12 Detailed Solution

Download Solution PDF

Concept:

a- b= (a + b)(a - b)

sin C + sin D = 2sin(C+D2)cos(CD2)

sin C - sin D = 2cos(C+D2)sin(CD2)

2 sin x cos x = sin 2x

Calculation:

Consider, sin2 6x – sin2 4x

= (sin 6x + sin 4x) (sin 6x – sin 4x)

= [ 2sin(6x+4x2)cos(6x4x2) ] [2cos(6x+4x2)sin(6x4x2)]

[2sin5xcosx][2cos5xsinx]

Rearranging the terms, we get

[2sin5xcos5x][2sinxcosx]

= sin 10x sin 2x

= sin 2x sin 10x

Value of cosec(-1410°) is 

  1. -1
  2. -2/√3
  3. 2
  4. 2/√3

Answer (Detailed Solution Below)

Option 3 : 2

Multiple and Sub-multiple Angles Question 13 Detailed Solution

Download Solution PDF

Concept:

cosec (2nπ - θ) = - cosec θ

Calculation:

cosec (-1410°) = -cosec (1410°)

= -cosec (4× 360° - 30°)

Since cosec(2nπ - θ) = - cosecθ, we can write:

- cosec (4×360° - 30°) = - (-cosec (30°))

= cosec 30° 

= 2

Hence, option (3) is correct.

What is the value of cos 18° - sin 18° ? 

  1. √2 sin27° 
  2. 12sin27° 
  3. √2 cos27° 
  4. 12cos27° 

Answer (Detailed Solution Below)

Option 1 : √2 sin27° 

Multiple and Sub-multiple Angles Question 14 Detailed Solution

Download Solution PDF

Concept:

cos (90 - x) = sin x

sin A - sin B = 2cos(A+B)2sin (AB)2

cos 45° = 12

 

Calculation:

Given,

cos18° - sin18°

= cos (90° - 72°) - sin 18°

= sin 72° - sin 18°

= 2 cos (72°+18°)2× sin (72°18°)2

= 2 cos 45° sin 27°

= 2× 12× sin 27°

= √2 sin 27° 

cosA+cosBsinAsinB=

  1. tanA+B2
  2. tanAB2
  3. cotA+B2
  4. cotAB2

Answer (Detailed Solution Below)

Option 4 : cotAB2

Multiple and Sub-multiple Angles Question 15 Detailed Solution

Download Solution PDF

Concept:

sinAsinB=2cosA+B2sinAB2

cosA+cosB=2cosA+B2cosAB2

 

Calculation:

cosA+cosBsinAsinB=

2cosA+B2cosAB22cosA+B2sinAB2

=cotAB2

Hence, option (4) is correct.

Get Free Access Now
Hot Links: teen patti master official teen patti casino apk teen patti master download teen patti real cash 2024 teen patti tiger