लैग्रान्ज माध्यमान प्रमेय को f(b) - f(a) = (b - a)f'(c), a < c < b लिखने पर c का मान क्या है, यदि f(x) = x(x - 1), a = 0, b=12 है?

This question was previously asked in
Bihar Senior Secondary Teacher (Mathematics) Official Paper (Held On: 26 Aug, 2023 Shift 2)
View all Bihar Senior Secondary Teacher Papers >
  1. 14
  2. 13
  3. 15
  4. उपर्युक्त में से एक से अधिक
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 14
Free
BPSC बिहार शिक्षक भर्ती : कैबिनेट मंत्री टेस्ट
29.2 K Users
25 Questions 25 Marks 20 Mins

Detailed Solution

Download Solution PDF

व्याख्या​:

लैग्रेंज माध्यमान प्रमेय f(b) - f(a) = (b - a)f'(c), a < c < b के रूप में है।

यहाँ f(x) = x(x - 1), a = 0, b=12

⇒ f'(x) = x + x - 1  =2x - 1

इसलिए, f(0) = 0, f(12) = 12(- 12) = - 14 और f'(c) = 2c - 1

तब लैग्रेंज प्रमेय का प्रयोग करने पर,

f(12) - f(0) = (12 - 0)f'(c), 0 < c < 12

⇒ - 14 - 0 = 12(2c - 1)

⇒ - 14 = c - 12

⇒ c = - 1412 ⇒ c = 14

अतः विकल्प (1) सही है। 

Latest Bihar Senior Secondary Teacher Updates

Last updated on May 25, 2025

-> BPSC Senior Secondary Teacher, BPSC TRE 4.0 is to be conducted in August, 2025.

-> CTET/STET-qualified candidates can appear for the BPSC TRE 4.0.

-> The Bihar Senior Secondary Teacher eligibility is PG + B.Ed./ B.El.ED + STET Paper-2 Pass. 

-> The selection process includes a written exam. To boost your exam preparation, refer to the Bihar Senior Secondary Teacher Test Series.  

More Mean Value Theorem Questions

More Calculus Questions

Get Free Access Now
Hot Links: teen patti master golden india teen patti joy apk teen patti gold new version teen patti bindaas teen patti 100 bonus