Mathematical Science MCQ Quiz in मल्याळम - Objective Question with Answer for Mathematical Science - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 8, 2025

നേടുക Mathematical Science ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Mathematical Science MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Mathematical Science MCQ Objective Questions

Top Mathematical Science MCQ Objective Questions

Mathematical Science Question 1:

Let \(\{a_n\}_{n=1}^{\infty}\) be a sequence of non negative real number. Which of the following statement is not true?

  1. If \(\sum_{n=1}^{\infty} a_n < \infty \) then \(\sum_{n=1}^{\infty} a_n^5 < \infty \)
  2. If \(\sum_{n=1}^{\infty} a_n^5 < \infty \) then \(\sum_{n=1}^{\infty} a_n < \infty \)
  3. If \(\sum_{n=1}^{\infty} a_n^{\frac{3}{2}} < \infty \) then \(\sum_{n=1}^{\infty} \frac{ a_n}{n} < \infty \)
  4. (i) & (iii) both are correct.

Answer (Detailed Solution Below)

Option 2 : If \(\sum_{n=1}^{\infty} a_n^5 < \infty \) then \(\sum_{n=1}^{\infty} a_n < \infty \)

Mathematical Science Question 1 Detailed Solution

Concept -

P - test - 

\(\sum \frac{1}{n^p}\) is convergent for p > 1

Explanation -

For option (ii) -

If an = 1/n be a sequence of non - negative real number.

If \(\sum_{n=1}^{\infty} a_n^5 = \sum_{n=1}^{\infty} \frac{1}{n^5} \) is convergent by P - test.

but \(\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}\) is divergent series 

Hence option(ii) is false.

For option(i) -

If \(\sum_{n=1}^{\infty} a_n \)  is convergent then \(\sum_{n=1}^{\infty} a_n^5 \) is also convergent for any convergent series.

Hence option(i) is true.

For option(iii) -

If \(\sum_{n=1}^{\infty} a_n^{\frac{3}{2}} \) is convergent then \(\sum_{n=1}^{\infty} a_n \) is either cgt or dgt as well

but in both cases, the series \(\sum_{n=1}^{\infty} \frac{ a_n}{n}\) is convergent.

Hence option(iii) is true.

Mathematical Science Question 2:

Let W be the column space of the matrix

\(X=\left[\begin{array}{rr}1 & -1 \\ 1 & 2 \\ 1 & -1\end{array}\right]\) then the orthogonal projection of the vector \(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \) on W is

  1. \(\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \)
  2. \(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \)
  3. \(\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \)
  4. \(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)

Answer (Detailed Solution Below)

Option 2 : \(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \)

Mathematical Science Question 2 Detailed Solution

Explanation:

\(X=\left[\begin{array}{rr}1 & -1 \\ 1 & 2 \\ 1 & -1\end{array}\right]\)

Let w1\(\left[\begin{array}{r}1 \\ 1 \\ 1\end{array}\right]\) and w2 = \(\left[\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right]\) and u = \(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \)

then orthogonal projection of u on W is 

\(\frac{}{}\) w\(\frac{}{}\)w2

\(\frac13\)\(\left[\begin{array}{r}1 \\ 1 \\ 1\end{array}\right]\)\(\frac26\)\(\left[\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right]\) = \(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \)

\(\frac13\)\(\left[\begin{array}{r}1 \\ 1 \\ 1\end{array}\right]\)\(\frac13\)\(\left[\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right]\) = \(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \)

(2) correct

Mathematical Science Question 3:

Let \(C=\left[\left(\begin{array}{l} 1 \\ 2 \end{array}\right),\left(\begin{array}{l} 2 \\ 1 \end{array}\right)\right]\) be a basis of ℝ2 and T: ℝ→ℝ2 be defined by \(T\left(\begin{array}{l} x \\ y \end{array}\right)=\left(\begin{array}{l} x+y \\ x-2 y \end{array}\right)\) If T[C] represents the matrix of T with respect to the basis C, then which among the following is true?

  1. \(T[C]=\left[\begin{array}{rr} -3 & -2 \\ 3 & 1 \end{array}\right]\)
  2. \(T[C]=\left[\begin{array}{rr} 3 & -2 \\ -3 & 1 \end{array}\right]\)
  3. \(T[C]=\left[\begin{array}{rr} -3 & -1 \\ 3 & 2 \end{array}\right]\)
  4. \(T[C]=\left[\begin{array}{rr} -3 & 1 \\ 3 & 2 \end{array}\right]\)

Answer (Detailed Solution Below)

Option 3 : \(T[C]=\left[\begin{array}{rr} -3 & -1 \\ 3 & 2 \end{array}\right]\)

Mathematical Science Question 3 Detailed Solution

Explanation:

T: ℝ→ℝ2 be defined by \(T\left(\begin{array}{l} x \\ y \end{array}\right)=\left(\begin{array}{l} x+y \\ x-2 y \end{array}\right)\)

\(C=\left[\left(\begin{array}{l} 1 \\ 2 \end{array}\right),\left(\begin{array}{l} 2 \\ 1 \end{array}\right)\right]\) be a basis of ℝ2 

So, \(T\left(\begin{array}{l} 1 \\ 2 \end{array}\right)=\left(\begin{array}{l} 3 \\ -3 \end{array}\right)\) = \(-3\left(\begin{array}{l} 1 \\ 2 \end{array}\right)+3\left(\begin{array}{l} 2 \\ 1 \end{array}\right)\)

 \(T\left(\begin{array}{l} 2 \\ 1 \end{array}\right)=\left(\begin{array}{l} 3 \\ 0 \end{array}\right)\) = \(-1\left(\begin{array}{l} 1 \\ 2 \end{array}\right)+2\left(\begin{array}{l} 2 \\ 1 \end{array}\right)\)

So, matrix representation is

\(T[C]=\left[\begin{array}{rr} -3 & -1 \\ 3 & 2 \end{array}\right]\)

Option (3) is true and others are false

Mathematical Science Question 4:

If \(\lim_{x\to0}\frac{x(1-\cos x)-ax\sin x}{x^4}\) exist and finite then the value of a is

  1. 0
  2. 1
  3. 2
  4. any value

Answer (Detailed Solution Below)

Option 1 : 0

Mathematical Science Question 4 Detailed Solution

Concept:

L’Hospital’s Rule: If \(\lim_{x\to c}f(x)\) = \(\lim_{x\to c}g(x)\) = 0 or ± ∞ and g'(x) ≠ 0 for all x in I with x ≠ c and \(\lim_{x\to c}\frac{f'(x)}{g'(x)}\) exist then \(\lim_{x\to c}\frac{f(x)}{g(x)}\) = \(\lim_{x\to c}\frac{f'(x)}{g'(x)}\)

Explanation:

\(\lim_{x\to0}\frac{x(1-\cos x)-ax\sin x}{x^4}\) (0/0 form so using L'hospital rule)

\(\lim_{x\to0}\frac{x sin x + 1 - cosx - ax cos x - asinx }{4x^3}\) 

\(\lim_{x\to0}\frac{1 + (x-a) sin x - (ax + 1) cos x}{4x^3}\)

Again using L'hospital rule

\(\lim_{x\to0}\frac{(x-a) cos x + sin x + (ax + 1) sin x - acos x}{12x^2}\)

\(\lim_{x\to0}\frac{(x-2a) cos x + (ax + 2) sin x }{12x^2}\)

It will be 0/0 form if

x - 2a = 0

⇒ a = 0

Option (1) is correct

Mathematical Science Question 5:

Find the limit of sin (y)/x, where (x, y) approaches to (0, 0)?

  1. 1
  2. 0
  3. infinite
  4. doesn't exist

Answer (Detailed Solution Below)

Option 4 : doesn't exist

Mathematical Science Question 5 Detailed Solution

Given:

f(x, y) = \(\frac{siny}{x}\) (x, y) → (0, 0)

Concept Used:

Putting y = mx in the function and checking whether the function is free from m then limit will exist if not then limit will not exist.

Solution:

We have,

f(x, y) = \(\frac{siny}{x}\) (x, y) → (0, 0)

Put y = mx

So, 

lim (x, y) → (0, 0) \(\frac{siny}{x}\)

⇒ lim x → 0 \(\frac{sin mx}{x}\)
 

We cannot eliminate m from the above function.

Hence limit does not exist.

\(\therefore\) Option 4 is correct.

Mathematical Science Question 6:

A function f defined such that for all real x, y 

(i) f(x + y) = f(x).f(y)

(ii) f(x) = 1 + x g(x)

where \(\lim _{x \rightarrow 0} g(x) = 1\) what is \(\frac{df(x)}{dx}\) equal to ?

  1. g(x)
  2. f(x)
  3. g'(x)
  4. g(x) + xg'(x)

Answer (Detailed Solution Below)

Option 2 : f(x)

Mathematical Science Question 6 Detailed Solution

Explanation:

Here, it is given that

(i) f(x + y) = f(x).f(y) and

(ii) f(x) = 1 + x g(x), where \(\lim _{x \rightarrow 0} g(x) = 1\)

Now, writing for y in the given condition. We have

f(x + h) = f(x).f(h)

Then, f(x + h) - f(x) = f(x)f(h) - f(x)

Or \(\frac{f(x+h)-f(x)}{h}= \frac{f(x)[f(h) - 1]}{h}\)

                      = \( \frac{f(x)h. g(h)}{h}=f(x). g(h)\) (using (ii))

Hence, \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} f(x) \cdot g(h)=f(x) \cdot 1\)

Since, by hypothesis \(\lim_{h \rightarrow 0} g(h) = 1\)

It follows that f'(x) = f(x)

Since, f(x) exists, f'(x) also exists

and f'(x) = f(x) 

⇒ \(\frac{d}{dx} f(x) = f(x)\)

(2) is true.

Mathematical Science Question 7:

How many real roots does the polynomial x4 - 3x3 - x2 + 4 have in between [1,4] ?

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2

Mathematical Science Question 7 Detailed Solution

Concept -

If f : [a,b] → \(\mathbb{R}\) and f(a) > 0 and f(b) < 0 then there exist c ∈ (a,b) such that f(c) = 0

Explanation -

We have the polynomial f(x) = x4 - 3x3 - x2 + 4

Now f'(x) = 4x3 - 9x2 - 2x = x( 4x2 - 9x - 2) 

Now for the critical points 

f'(x) = 0

⇒  x( 4x2 - 9x - 2) = 0

⇒ x = 0 or 4x2 - 9x - 2 = 0

Now for 4x2 - 9x - 2 = 0 ⇒ x = \(\frac{9\pm\sqrt{81+ 32}}{8}= \frac{9\pm\sqrt{113}}{8}\)

⇒ we get three critical points of the given polynomial.

Now f(0) = 4 and f(1/2) = 1/16 - 3/8 -1/4 + 4 < 4 and f(1) = 1 - 3 - 1 + 4= 1

Now function is decreasing from 0 to 1.

Now f(2) = 16 - 24 - 4 + 4 = -8 < 0

Hence we get a one real roots in between 1 & 2.

Now f(3) > 0 and f(4) > f(3) 

Hence we get a one real roots in between 2 & 3.

Therefore we get two real roots in between  [1,4].

Hence option(3) is correct. 

Mathematical Science Question 8:

The value of \(\lim_{n \to \infty } n sin (2 \pi e n!)\) is  

  1. 1
  2. π

  3. 2 π 
  4. Does not exist.

Answer (Detailed Solution Below)

Option 3 : 2 π 

Mathematical Science Question 8 Detailed Solution

Explanation -

Let an = n sin(2 π en!) we have 

\(e = \sum_{k=0}^n \frac{1}{k!} + \sum_{k=n+1}^{\infty} \frac{1}{k!} \)

⇒ \(2 \pi e n! = 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} )\)

Where r is positive integer. so we have

\(lim_{ n \to \infty } n sin( 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

\(lim_{ n \to \infty } n \ sin( 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

Further, observe that 

\(\frac{1}{n+1} < ​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = \frac{1}{n+1}+ \frac{1}{(n+1)(n+2)}+..... < \frac{1}{n}+ \frac{1}{n^2} + ... = \frac{1}{n-1}\)

By squeeze principle, we have 

\(lim_{n \to \infty }​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = lim_{n \to \infty } b_n = 0\) and \(lim_{n \to \infty }n b_n = 1\)

So using the result that \(lim_{x \to 0 } \frac{sinx}{x} = 1\) we get 

\(lim_{n \to \infty } a_n = ​​lim_{n \to \infty } n sin(2 \pi b_n) = ​​lim_{n \to \infty }2 \pi b_n n \frac{sin(2 \pi b_n)}{2 \pi b_n} = 2\pi\)

Hence Option(3) is correct.

Mathematical Science Question 9:

Let f ∈ C1[- π, π ], Define for \(n \in \mathbb{N}\)\(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\),  which of the following is correct? 

  1. b→ 0 as n → ∞ 
  2. nbn → 0 as n → ∞ 
  3. The series \(\sum _{n=1}^{\infty} n^3 b_n^3\) is absolutely convergent.
  4. All the above 

Answer (Detailed Solution Below)

Option 4 : All the above 

Mathematical Science Question 9 Detailed Solution

Concept -

Reimann Lebesgue Lemma -

If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity.

Explanation -

We have the sequence  \(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\)

Note that f(x) being continuous on a compact set is bounded and |sin t | ≤ 1

Therefore  \(|a_n| \le \int_{-\pi}^{\pi} |f(t)|dt \le 2 \pi M\)   ∀ n  where M is bound on f(x).

Thus the sequence {bn} is bounded.

\(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\)

integration by parts, we get 

bn  \([\frac{f(t) cos (nt)}{n}]_{-\pi}^{\pi} - \frac{1}{n} \int_{-\pi}^{\pi} f'(t) cos(nt) dt = - \frac{1}{n} \int_{-\pi}^{\pi} f'(t) cos(nt) dt \)

Since f'(t) is continuous then by Reimann Lebesgue Lemma, which is " If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity. "

Thus in particular, bn and n bn → 0 as n → ∞ 

Hence option (1) and (2) is correct.

For option(iii) -

\(\sum _{n=1}^{\infty} n^3 b_n^3\) is also absolutely convergent because bbeing bounded and and cgs to 0.

Hence the option (3) is correct. 

Hence option(4) is the correct option.

Mathematical Science Question 10:

The series \(\sum{3^n sin(\frac{1}{5^n x})}\) is ______ on the interval [1, ∞ ).

  1. Absolutely convergent
  2. Convergent only
  3. Divergent 
  4. Oscillatory

Answer (Detailed Solution Below)

Option 1 : Absolutely convergent

Mathematical Science Question 10 Detailed Solution

Concept -

(i) ∑ |an | is convergent then ∑ an is absolutely convergent.

(ii) Ratio Test - 

If \(lim_{n \to \infty } \frac{a_{n+1}}{a_n}= p < 1\) then the series  ∑ an is convergent.

Explanation -

We have the series \(∑{3^n sin(\frac{1}{5^n x})}\) 

Now for Absolutely convergent -

\(∑ |{3^n sin(\frac{1}{5^n x})}| \le ∑ \frac{1}{x} \times (\frac{3}{5})^n\)

Now using Ratio Test -

\(lim_{n \to \infty } \frac{a_{n+1}}{a_n}= lim_{n \to \infty } (\frac{3}{5})= \frac{3}{5}< 1\)

Hence the series \(∑ \frac{1}{x} \times (\frac{3}{5})^n\) is convergent and the given series is absolutely convergent.

Hence Option (i) is true.

Get Free Access Now
Hot Links: teen patti gold online teen patti star login teen patti master gold teen patti baaz