Vector Algebra MCQ Quiz - Objective Question with Answer for Vector Algebra - Download Free PDF

Last updated on Jun 14, 2025

Latest Vector Algebra MCQ Objective Questions

Vector Algebra Question 1:

Let a,b,(a×b) be unit vectors. What is a.b

  1. 0
  2. 1/2
  3. 1
  4. 3

Answer (Detailed Solution Below)

Option 1 : 0

Vector Algebra Question 1 Detailed Solution

Calculation:

Given,

The vectors a,b,(a×b) are unit vectors.

Since a and  b are unit vectors, we know:

|a|=1and|b|=1.

The magnitude of the cross product (a×b) is given by:

|a×b|=|a||b|sinθ=1×1×sinθ=sinθ.

Since (|a×b|=1, we have:

sinθ=1, so θ=90, meaning a and b are perpendicular.

The dot product (ab) is:

ab=|a||b|cosθ=1×1×cos90=0.

∴ The value of(ab) is 0.

Hence, the correct answer is Option 1.

Vector Algebra Question 2:

The position vectors of three points A, B and C respectively, where  a,b and c  respectively, where c=(cos2θ)a+(sin2θ)b. What is (a×b)+(b×c)+(c×a) equal to?

  1. 0
  2. 2c
  3. 3c
  4. Unit vector

Answer (Detailed Solution Below)

Option 1 : 0

Vector Algebra Question 2 Detailed Solution

Calculation:

Given,

The position vectors of points A, B, and C are a, b, and c respectively, and c=cos2θa+sin2θb.

The expression to evaluate is: (a×b)+(b×c)+(c×a).

First, substitute c into the equation:

(a×b)+(b×(cos2θa+sin2θb))+(cos2θa+sin2θb)×a.

Using the distributive property of the cross product:

(a×b)+[(b×cos2θa)+(b×sin2θb)]+[(cos2θa×a)+(sin2θb×a)].

Since b×b=0 and a×a=0, we are left with:

(a×b)+cos2θ(b×a)+sin2θ(a×b).

Substitute b×a=(a×b) into the expression:

(a×b)+cos2θ(a×b)+sin2θ(a×b).

Factor out a×b:

a×b[1cos2θsin2θ].

Since cos2θ+sin2θ=1, the expression becomes:

a×b[11]=0.

∴ The final result is 0.

Hence, the correct answer is option 1. 

Vector Algebra Question 3:

The position vectors of three points A, B and C are a" style="display:block;position:absolute;width:100%;height:inherit;" />, b and c" style="display:block;position:absolute;width:100%;height:inherit;" /> respectively such that 3a4b+c=0 What is AB:BC equal to?

  1. 3:1
  2. 1:3
  3. 3:4
  4. 1:4

Answer (Detailed Solution Below)

Option 2 : 1:3

Vector Algebra Question 3 Detailed Solution

Calculation:

Given,

3a4b+c=0

c=4b3a

The vectorAB is:

AB=ba

The vector BC is:

BC=cb

Substituting c=4b3a:

BC=(4b3a)b

BC=3b3a

Step 4: Now, BC=3(ba), which gives:

AB:BC=1:3

∴ The correct ratio is AB : BC = 1 : 3 , 

Hence, the correct answer is Option 2. 

Vector Algebra Question 4:

Consider the following statements in respect of a vector :

I. d" style="display:block;position:absolute;width:100%;height:inherit;" /> is coplanar with a" style="display:block;position:absolute;width:100%;height:inherit;" /> and b" style="display:block;position:absolute;width:100%;height:inherit;" />.

II. d" style="display:block;position:absolute;width:100%;height:inherit;" /> is perpendicular to c" style="display:block;position:absolute;width:100%;height:inherit;" />.

Which of the statements given above is/are correct?

  1. I only
  2. II only
  3. Both I and II
  4. Neither I nor II

Answer (Detailed Solution Below)

Option 3 : Both I and II

Vector Algebra Question 4 Detailed Solution

Calculation:

Given,

The vector d=(a×b)×c

Statement I: d is coplanar with a and b.

We use the vector triple product identity: (a×b)×c=(ac)b(bc)a.

This shows that d is a linear combination of a and b, hence d is coplanar with a and b.

Therefore, Statement I is correct.

Statement II: d is perpendicular to c.

To check this, compute the dot product dc. Using the vector triple product identity, we find:

dc=(ac)(bc)(bc)(ac)=0,

which means d is perpendicular to c.

Therefore, Statement II is correct.

∴ Both Statement I and Statement II are correct.

Hence, the correct answer is option  3. 

Vector Algebra Question 5:

A line makes angles α, β and γ with the positive directions of the coordinate axes. If , then what is a.b equal to?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Vector Algebra Question 5 Detailed Solution

Calculation:

Given,

cos2(α)+cos2(β)+cos2(γ)=1

Using the identity cos2(x)=1sin2(x), we substitute:

(1sin2(α))+(1sin2(β))+(1sin2(γ))=1

Simplifying the equation:

3(sin2(α)+sin2(β)+sin2(γ))=1

Rearrange to isolate the sine terms:

sin2(α)+sin2(β)+sin2(γ)=2

Now, calculate the dot product:

ab=sin2(α)+sin2(β)+sin2(γ)=2

∴ The value of abis 2.

Hence, the correct answer is Option 4.

Top Vector Algebra MCQ Objective Questions

If the vectors i^+2j^+3k^λi^+4j^+7k^3i^2j^5k^ are collinear if λ equals

  1. 3
  2. 4
  3. 5
  4. 6

Answer (Detailed Solution Below)

Option 1 : 3

Vector Algebra Question 6 Detailed Solution

Download Solution PDF

Concept:

Conditions of collinear vector:

  • Three points with position vectors a,bandc are collinear if and only if the vectors (ab) and (ac) are parallel. ⇔ (ab)=λ(ac)
  • If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then |x1y1z1x2y2z2x3y3z3|=0

 

Solution:

We know that, If the points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) be collinear then |x1y1z1x2y2z2x3y3z3|=0

Given  i^+2j^+3k^λi^+4j^+7k^3i^2j^5k^ are collinear

∴ |123λ47325|=0

⇒ 1 (-20 + 14) – (2) (-5λ + 21) + 3 (-2λ + 12) = 0

⇒ -6 + 10λ – 42 - 6λ + 36  = 0

⇒ 4λ = 12

∴ λ = 3

What is the value of p for which the vector p(2î - ĵ + 2k̂) is of 3 units length?

  1. 1
  2. 2
  3. 3
  4. 6

Answer (Detailed Solution Below)

Option 1 : 1

Vector Algebra Question 7 Detailed Solution

Download Solution PDF

Concept:

Let a=xi+yj+zk then magnitude of the vector of a = |a|=x2+y2+z2

Calculation:

Let a =  p(2î - ĵ + 2k̂)

Given, |a|=3

⇒ 4p2+p2+4p2=3

⇒ 9p2=3

⇒ 3p = 3

∴ p = 1

Find the value of a×a

  1. 1
  2. 0
  3. |a|
  4. |a|2

Answer (Detailed Solution Below)

Option 2 : 0

Vector Algebra Question 8 Detailed Solution

Download Solution PDF

Concept:

Dot product of two vectors is defined as:

A.B=|A|×|B|×cosθ

Cross/Vector product of two vectors is defined as:

A×B=|A|×|B|×sinθ×n^

where θ is the angle between AandB

Calculation:

To Find: Value of a×a

Here angle between them is 0°

a×a=|a|×|a|×sin0×n^=0

If A = 5i^2j^+4k^ and B = i^+3j^7k^ , then what is the value of |AB|?

  1. 6√2
  2. 7√2
  3. 8√2
  4. 9√2

Answer (Detailed Solution Below)

Option 4 : 9√2

Vector Algebra Question 9 Detailed Solution

Download Solution PDF

Concept:

If A=xi^yj^+zk^, then |A|=x2+y2+z2

Calculation:

Given A = 5i^2j^+4k^ and B = i^+3j^7k^

AB=BA

AB = i^+3j^7k^(5i^2j^+4k^)

AB = 4i^+5j^11k^

Now |AB|=(4)2+52+(11)2

|AB|=16+25+121

|AB|=162 = 9√2

 The point with position vectors 5î - 2ĵ,  8î - 3ĵ,  aî - 12ĵ are collinear if the value of a is 

  1. 31
  2. 51
  3. 42
  4. 35

Answer (Detailed Solution Below)

Option 4 : 35

Vector Algebra Question 10 Detailed Solution

Download Solution PDF

Concept:

Three or more points are collinearif slope of any two pairs of points is same.

The slope of a line passing through the distinct points (x1, y1) and (x2, y2) is y2y1x2x1

Calculation:

Here, 5i^2j^,8i^3j^,ai^12j^

Let, A = (5, -2), B = (8, -3), C = (a, -12)

Now, slope of AB = Slope of BC = Slope of AC ....(∵ points are collinear)

 3(2)85=12(3)a813=9a8

⇒ a - 8= 27

⇒ a = 27 + 8 = 35

Hence, option (4) is correct.

If 4i^+j^3k^ and pi^+qj^2k^ are collinear vectors, then what are the possible values of p and q respectively?

  1. 4, 1
  2. 1, 4
  3. 83,23
  4. 23,83

Answer (Detailed Solution Below)

Option 3 : 83,23

Vector Algebra Question 11 Detailed Solution

Download Solution PDF

Concept:

For two vectors m and n to be collinear,​ m=λn where λ is a scalar.

Calculation:

Given that, the vectors 4i^+j^3k^ & pi^+qj^2k^ are collinear.

Since two vectors m and n are collinear then m=λn where λ is a scalar.

⇒ 4i^+j^3k^ =λ×(pi^+qj^2k^)

⇒ 4i^+1j^3k^ =λpi^+λqj^2λk^

⇒ λp = 4,  λq = 1 and -2λ = -3

⇒  λ = 3/2 

So, by substituting λ = 3/2 in  λp = 4 and λq = 1, we get

⇒ (3/2)p = 4 and (3/2)q = 1

⇒ p = 8/3 and q  = 2/3

∴  83,23is the correct answer.

The sine of the angle between vectors a=2i^6j^3k^ and b=4i^+3j^k^ is

  1. 126
  2. 526
  3. 526
  4. 126

Answer (Detailed Solution Below)

Option 2 : 526

Vector Algebra Question 12 Detailed Solution

Download Solution PDF

Concept:

If a=a1i^+a2j^+a3k^andb=b1i^+b2j^+b3k^ then ab=|a|×|b|cosθ

Calculation:

Given: a=2i^6j^3k^ and b=4i^+3j^k^

|a|=7,|b|=26andab=7

cosθ=ab|a|×|b|=77×26=126

sin2θ=1cos2θ=1126=2526

sinθ=526

If a+b+c=0,|a|=3,|b|=5 and |c|=7, find the angle between a and b.

  1. π / 2
  2. π / 3
  3. π / 6
  4. π / 4

Answer (Detailed Solution Below)

Option 2 : π / 3

Vector Algebra Question 13 Detailed Solution

Download Solution PDF

Concept:

Let the angle between a and bis θ

a.b=2abcosθ

 

Calculations:

consider, the angle between a and bis θ

Given, a+b+c=0

a+b=c

|a+b|=|c|

Squaring on both side, we get

|a+b|2=|c|2

|a|2+2a.b+|b|2=|c|2

|a|2+|b|2+2abcosθ=|c|2

(3)|2+(5)2+2(3)(5)cosθ=(7)2

30cosθ=15

cosθ=12

⇒ θ = π / 3

Hence, If a+b+c=0,|a|=3,|b|=5 and |c|=7, then the angle between a and bis π / 3

If iaj+5kand 3i6j+bk are parallel vectors then b is equal to?

  1. 5
  2. 10
  3. 15
  4. 20

Answer (Detailed Solution Below)

Option 3 : 15

Vector Algebra Question 14 Detailed Solution

Download Solution PDF

Concept:

If aandb are two vectors parallel to each other then a=λb or a×b=0

Calculation:

Given:

 iaj+5k and 3i6j+bk are parallel vectors,

Therefore, iaj+5k=λ(3i6j+bk)

Equating the coefficient of i,jandk

⇒ 1 = 3λ, ∴ λ = 1/3            

⇒ -a = -6λ 

⇒ 5 = bλ                 .... (1)

Put the value of λ in equation (1), we get

5 = b × (1/3)

So, b = 15

Let a=i^+j^+k^,b=i^j^+k^ and c = î - ĵ - k̂ be three vectors. A vector v in the plane of a and b whose projection on c|c| is 13, is

  1. 3î - ĵ + 3k̂
  2. î - 3ĵ + 3k̂
  3. 5î - 2ĵ + 5k̂
  4. 2î - ĵ + 3k̂

Answer (Detailed Solution Below)

Option 1 : 3î - ĵ + 3k̂

Vector Algebra Question 15 Detailed Solution

Download Solution PDF

Calculation:

 a=i^+j^+k^,b=i^j^+k^ and c = î - ĵ - k̂

Given:  vector v in the plane of a and b 

Therefore, v=a+λb

⇒ v=(i^+j^+k^)+λ(i^j^+k^)

= (1 + λ)î + (1 - λ)ĵ  + (1 + λ)k̂                .... (1)

Projection of v on c|c|=13

⇒ v=c|c|=13 

⇒ (1+λ)(1λ)(1+λ)3=13

⇒ -(1 - λ) = 1

∴ λ = 2

Now, put the value of λ in equation (1), we get 

v = 3î - ĵ + 3k̂

Get Free Access Now
Hot Links: teen patti online game teen patti master game teen patti octro 3 patti rummy yono teen patti