Binomial Theorem MCQ Quiz - Objective Question with Answer for Binomial Theorem - Download Free PDF

Last updated on Jun 14, 2025

Latest Binomial Theorem MCQ Objective Questions

Binomial Theorem Question 1:

If the sum of binomial coefficients in the expansion of is 256, then the greatest binomial coefficient occurs in which one of the following terms?

  1. Third
  2. Fourth
  3. Fifth
  4. Ninth

Answer (Detailed Solution Below)

Option 3 : Fifth

Binomial Theorem Question 1 Detailed Solution

Concept:

Sum of Binomial Coefficients and Greatest Binomial Coefficient:

  • The sum of binomial coefficients in the expansion of (x+y)n is calculated by substituting x = 1 and y = 1. The result is 2n.
  • To find the greatest binomial coefficient, we analyze the coefficients C(n,r) where r is the term index in the expansion. The greatest coefficient occurs near the middle term(s).
  • Key Formulae:
    • Sum of binomial coefficients: Sum=2n
    • Binomial coefficient: C(n,r)=n!r!(nr)!
    • Greatest binomial coefficient: For even n, it occurs at r = n/2. For odd n, it occurs at r = (n-1)/2 and r = (n+1)/2.

 

Calculation:

Given,

Sum of binomial coefficients = 2n=256

We calculate n:

2n=256

28=256

Greatest Binomial Coefficient:

For n=8 (even), the greatest binomial coefficient occurs at r=n/2=8/2=4.

⇒ The term index is r = 4, which corresponds to the 5th term (since indexing starts from 0).

∴ The greatest binomial coefficient occurs in the 5th term.

Hence, the correct answer is Option 3.

Binomial Theorem Question 2:

What is the number of rational terms in the expansion of (3+514)12

  1. 2
  2. 3
  3. 4
  4. 6

Answer (Detailed Solution Below)

Option 3 : 4

Binomial Theorem Question 2 Detailed Solution

Concept:

A term in the binomial expansion of (a + b)n is given by Tk+1 = C(n, k) × an-k × bk.

For a term to be rational, the exponents of both √3 and 51/4 must be integers.

Formula Used:

In (√3)n-k, n-k must be even for it to be rational.

In (51/4)k, k must be a multiple of 4 for it to be rational.

Calculation:

Let n = 12:

⇒ For √3n-k to be rational, n-k must be even.

⇒ Since n = 12, k must also be even.

⇒ For (51/4)k to be rational, k must be a multiple of 4.

⇒ The values of k that satisfy both conditions (k is even and a multiple of 4) are:

⇒ k = 0, 4, 8, and 12.

⇒ These correspond to 4 rational terms in the expansion.

Hence, the Correct answer is Option 3. 

Binomial Theorem Question 3:

If the constant term in the expansion of (35x+2x53)12,x0 is α × 28 × 35 then 25α is equal to:

  1. 639
  2. 724
  3. 693
  4. 742
  5. 886

Answer (Detailed Solution Below)

Option 3 : 693

Binomial Theorem Question 3 Detailed Solution

Concept:

The general term of the binomial (a + b)n is given by Tr+1 = nCran-rbr.

Calculation:

Given, (35x+2x53)12,x0

∴ General term, Tr+1=12Cr(31/5x)12r(2x51/3)r

⇒ Tr+1=12Cr(3)12r5(2)r(x)2r12(5)r/3

For constant term, power of x = 0

⇒ 2r - 12 = 0

⇒ r = 6

∴ T7=12C6(3)6/5(2)652=(9×11×725)2831/5 = α × 28 × 35 

⇒ α = (9×11×725)

⇒ 25α = 9 × 11 × 7 = 693.

∴ The value of 25α is equal to 693.

The correct value is Option 3.

Binomial Theorem Question 4:

The coefficient of x3 in (2x3x2)9 is

  1. 28 × 33
  2. 27 × 34
  3. 29 × 34
  4. 28 × 34
  5. 22 × 33

Answer (Detailed Solution Below)

Option 3 : 29 × 34

Binomial Theorem Question 4 Detailed Solution

Concept:

General term: General term in the expansion of (x + y) n is given by

  • T(r+1)=nCr×xnr×yr
  • nCr=n!r!(nr)!


Calculation:

We have to find coefficient of x3 in (2x3x2)9

General term: T(r+1)=nCr×xnr×yr

T(r+1)=9Cr×(2x)9r×(3x2)r

=9Cr×(2)9r×(x)9r×(3)r×(x2)r

=9Cr×(2)9r×(3)r×(x)9r×x2r

=9Cr×(2)9r×(3)r×(x)93r

For coefficient of x3;

⇒ 9 – 3r = 3

⇒ 6 = 3r

∴ r = 2

Now, Coefficient of x3 =9Cr×(2)9r×(3)r==9C2×(2)92×(3)2

=9!2!(92)!×27×32=9×8×7!2×7!×27×32

= 32 × 22 × 27 × 32 = 29 × 34

∴ Option 3 is correct.

Binomial Theorem Question 5:

In a binomial distribution, if the mean is 6 and the standard deviation is √2, then what are the values of the parameters n and p respectively?

  1. 18 and 1/3
  2. 9 and 1/3
  3. 18 and 2/3
  4. 9 and 2/3

Answer (Detailed Solution Below)

Option 4 : 9 and 2/3

Binomial Theorem Question 5 Detailed Solution

Explanation:

Given:

⇒ Mean x = np = 6....(i)

⇒ SD = npq=2...(ii)

Dividing (ii) by (i), we get

⇒ npqnp=26

⇒ q= 1/3

Now

⇒ p = 1 – q = 1- 1\3 = 2/3

From (i)

n×23=6

⇒n =9

∴ Option (d) is correct.

Top Binomial Theorem MCQ Objective Questions

Find the middle terms in the expansion of (2x+1x)8

  1. 8C4 × 24
  2. 8C4 × 25
  3. 8C4 
  4. None of the above

Answer (Detailed Solution Below)

Option 1 : 8C4 × 24

Binomial Theorem Question 6 Detailed Solution

Download Solution PDF

Concept:

General term: General term in the expansion of (x + y)n is given by

T(r+1)=nCr×xnr×yr

 

Middle terms: The middle terms is the expansion of (x + y) n depends upon the value of n.

  • If n is even, then total number of terms in the expansion of (x + y) n is n +1. So there is only one middle term i.e. (n2+1)th term is the middle term.
  • If n is odd, then total number of terms in the expansion of (x + y) n is n + 1. So there are two middle terms i.e. (n+12)thand (n+32)th are two middle terms.

 

Calculation:

Here, we have to find the middle terms in the expansion of (2x+1x)8

Here n = 8 (n is even number)

∴ Middle term = (n2+1)=(82+1)=5thterm

T5 = T (4 + 1) = 8C4 × (2x) (8 - 4) × (1x)4

T5 =  8C4 × 24

What is C(n, 1) + C(n, 2) + _ _ _ _  _ + C(n, n) equal to

  1. 2 + 22 + 23 + _ _ _ _ _  + 2n
  2. 1 + 2 + 22 + 2+ _ _ _ _ _ + 2n
  3. 1 + 2 + 22 + 23 + _ _ _ _ _ _ + 2n - 1
  4. 2 + 22 + 23 + _ _ _ _ _ + 2n - 1

Answer (Detailed Solution Below)

Option 3 : 1 + 2 + 22 + 23 + _ _ _ _ _ _ + 2n - 1

Binomial Theorem Question 7 Detailed Solution

Download Solution PDF

Concept:

(1 + x)n = nC0 × 1(n-0) × x 0nC1 × 1(n-1) × x 1 + nC2  × 1(n-2) × x2 + …. + nCn  × 1(n-n) × xn

nth  term of the G.P. is an = arn−1

Sum of n terms = s = a(rn1)(r1); where r >1

Sum of n terms = s = a(1rn)(1r); where r <1

Calculation:

C(n, 1) + C(n, 2) + _ _ _ _  _ + C(n, n) 

 nC1 + nC2 + ... + nCn 

⇒ nC0 + nC1 + nC2 + ... + nCn - nC0

⇒ (1 + 1)n - nC

2n - 1 = 2n121 = 1 × 2n121

Comparing it with a G.P sum = a × rn1r1, we get a = 1 and r = 2

∴ 2n - 1 = 1 + 2 + 22 + ... +2n-1 which will give us n terms in total.

What is the sum of the coefficients of first and last terms in the expansion of (1 + x)2n, where n is a natural number?

  1. 1
  2. 2
  3. n
  4. 2n

Answer (Detailed Solution Below)

Option 2 : 2

Binomial Theorem Question 8 Detailed Solution

Download Solution PDF

Concept:

nCr=n!(r!(nr)!)

(1 + x)n = nC0 × 1(n-0) × x 0nC1 × 1(n-1) × x 1 + nC2  × 1(n-2) × x2 + …. + nCn  × 1(n-n) × xn

 

Calculation:

Given expansion is (1 + x)2n

 2nC×1(2n-0) × x0 +  2nC1 ×1(2n-1) × x1 + ... +  2nC2n ×1(2n-2n) × x2n

First term = 2nC×1 × 1 = 1

Last term =  2nC2n ×1 × x2n = 1 × x2n = x2n

Sum = 1 + x2n

Coefficient of 1 = 1, coefficient of x2n = 1

∴ sum of the coefficients = 1 + 1 = 2.

Find the middle term in the expansion of (x + 3)6 ?

  1. 625x3
  2. 625x5
  3. 540x5
  4. 540x3

Answer (Detailed Solution Below)

Option 4 : 540x3

Binomial Theorem Question 9 Detailed Solution

Download Solution PDF

CONCEPT:

In the expansion of (a + b)n the general term  is given by: Tr + 1 = nCr ⋅ an – r ⋅ br

Note: In the expansion of (a + b)n , the rth term from the end is [(n + 1) – r + 1] = (n – r + 2)th term from the beginning.

In the expansion of (a + b)n , the middle term is (n2+1)th term if n is even.

In the expansion of (a + b)n , if n is odd then there are two middle terms which are given by:(n+12)thand(n+12+1)thterm

CALCULATION:

Given: (x + 3)6 

Here, n = 6

∵ n = 6 and it as even number.

As we know that, in the expansion of (a + b)the middle term is (n2+1)th term if n is even.

So, (62+1)th=4th term is the middle term in the expansion of  (x + 3)6 
 
As we know that, the general term  is given by: Tr + 1 = nCr ⋅ an – r ⋅ br
 
Here, n = 6, r = 3, a = x and b = 3.
 
T4 = T(3 + 1) = 6C3 ⋅ x3 ⋅ (3)3 = 540 x3
 
Hence, option D is the correct answer.

Find the middle terms in the expansion of (2x+1x)5

  1. 80
  2. 80x
  3. 80x and 40x
  4. 80x and 80x

Answer (Detailed Solution Below)

Option 3 : 80x and 40x

Binomial Theorem Question 10 Detailed Solution

Download Solution PDF

Concept:

General term: General term in the expansion of (x + y)n is given by

T(r+1)=nCr×xnr×yr

 

Middle terms: The middle terms is the expansion of (x + y) n depends upon the value of n.

  • If n is even, then total number of terms in the expansion of (x + y) n is n +1. So there is only one middle term i.e. (n2+1)th term is the middle term.
  • If n is odd, then total number of terms in the expansion of (x + y) n is n + 1. So there are two middle terms i.e. (n+12)thand (n+32)th are two middle terms.

 

 

Calculation:

Here, we have to find the middle terms in the expansion of (2x+1x)5

Here n = 5 (n is odd number)

∴ Middle term =  (n+12)thand (n+32)th = 3rd and 4th

T3 = T (2 + 1) = 5C2 × (2x) (5 - 2) × (1x)2  and T4 = T (3 + 1) = 5C3 × (2x) (5 - 3) × (1x)3 

T3 =  5C2 × (23x) and T4 = 5C3 × 22 × 1x

T3 = 80x and T4 = 40x

Hence the middle term of expansion is 80x and 40x

If the third term in the binomial expansion of (1 + x)m is (-1/8)x² then the rational value of m is

  1. 2
  2. 12
  3. 3
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 12

Binomial Theorem Question 11 Detailed Solution

Download Solution PDF

Concept:

Expansion of (1 + x)n:

(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+....

Calculation:

Given: the third term in the binomial expansion of (1 + x)m is (-1/8)x²

(1+x)m=1+mx+m(m1)2!x2+m(m1)(m2)3!x3+....

So, the third term in the binomial expansion of (1 + x)m is m(m1)2!x2

m(m1)2!x2 = (-1/8)x2

⇒ m(m1)2=18

⇒ 4m2 - 4m + 1 = 0

⇒ (2m - 1)2 = 0

⇒ 2m - 1 = 0

∴ m = 12

In the expansion of (x+13x2)10 the value of constant term (independent of x) is

  1. 5
  2. 8
  3. 45
  4. 90

Answer (Detailed Solution Below)

Option 1 : 5

Binomial Theorem Question 12 Detailed Solution

Download Solution PDF

Concept:

General term: General term in the expansion of (x + y) n is given by

  • T(r+1)=nCr×xnr×yr

 

Calculation:

Given expansion is (x+13x2)10

General term = T(r+1)=10Cr×x10r2×(13x2)r=10Cr×3r×x105r2 

For the term independent of x the power of x should be zero 

i.e 105r2=0

⇒ r = 2

∴ The required term is T(2+1)=10C2×32=5.

What is the coefficient of the middle term in the binomial expansion of (2 + 3x) 4?

  1. 6
  2. 12
  3. 108
  4. 216

Answer (Detailed Solution Below)

Option 4 : 216

Binomial Theorem Question 13 Detailed Solution

Download Solution PDF

Concept:

General term: General term in the expansion of (x + y)n is given by

T(r+1)=nCr×xnr×yr

Middle terms: The middle terms is the expansion of (x + y) n depends upon the value of n.

  • If n is even, then the total number of terms in the expansion of (x + y) n is n +1. So there is only one middle term i.e. (n2+1)th term is the middle term.

T(n2+1)=nCn2×xn2×yn2

  • If n is odd, then the total number of terms in the expansion of (x + y) n is n + 1. So there are two middle terms i.e. (n+12)thand (n+32)th are two middle terms.

 

Calculation:

Here, we have to find the coefficient of the middle term in the binomial expansion of (2 + 3x) 4

Here n = 4 (n is even number)

∴ Middle term = (n2+1)=(42+1)=3rdterm

T3 = T (2 + 1) = 4C2 × (2) (4 - 2) × (3x) 2

T3 = 6 × 4 × 9x2 = 216 x2

∴ Coefficient of the middle term = 216

The coefficient of x2 in the expansion of (45x2)1/2 is

  1. 516
  2. 516
  3. 512
  4. 512

Answer (Detailed Solution Below)

Option 1 : 516

Binomial Theorem Question 14 Detailed Solution

Download Solution PDF

Concept:

General term: General term in the expansion of (x + y)n is given by

T(r+1)=nCr×xnr×yr

Expansion of (1 + x)n:

(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+....

 

Calculation:

To Find: coefficient of x2 in the expansion of (45x2)1/2

(45x2)1/2=41/2(154x2)1/2As we know(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+....41/2(154x2)1/2=21[1+(54x2)×(12)+...]

Now, the coefficient of x2 in the expansion = 21×54×12=516

In the expansion of (1 + x)50, the sum of the coefficients of odd powers of x is

  1. 226
  2. 249
  3. 250
  4. 251

Answer (Detailed Solution Below)

Option 2 : 249

Binomial Theorem Question 15 Detailed Solution

Download Solution PDF

Formula used:

(1 + x) = [nCnC1 x + nC2 x+ … +nCn xn]

  • C0 + C1 + C2 + … + Cn = 2n
  • C0 + C2 + C4 + … =  2n-1
  • C1 + C3 + C5 + … = 2n-1

 

Calculation:

(1 + x)50  = [50C50C1 x + 50C2 x+ … +50Cn x50]    ----(1)

Here, n = 50

Using the above formula, the sum of odd terms of the coefficient is

S = (50C1 + 50C3­ + 50C5 + ……. + 50C49)

⇒ S = 250-1 = 249

∴ Sum of odd terms of the coefficient = 249

Get Free Access Now
Hot Links: teen patti joy teen patti neta happy teen patti