Scalar or Dot Product MCQ Quiz - Objective Question with Answer for Scalar or Dot Product - Download Free PDF

Last updated on Jun 30, 2025

Latest Scalar or Dot Product MCQ Objective Questions

Scalar or Dot Product Question 1:

A line makes angles α, β and γ with the positive directions of the coordinate axes. If , then what is a.b equal to?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Scalar or Dot Product Question 1 Detailed Solution

Calculation:

Given,

cos2(α)+cos2(β)+cos2(γ)=1

Using the identity cos2(x)=1sin2(x), we substitute:

(1sin2(α))+(1sin2(β))+(1sin2(γ))=1

Simplifying the equation:

3(sin2(α)+sin2(β)+sin2(γ))=1

Rearrange to isolate the sine terms:

sin2(α)+sin2(β)+sin2(γ)=2

Now, calculate the dot product:

ab=sin2(α)+sin2(β)+sin2(γ)=2

∴ The value of abis 2.

Hence, the correct answer is Option 4.

Scalar or Dot Product Question 2:

The vector a=i^+2j^+k^ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is b. Then the projection of 3a+2b on c=5i^+4j^+3k^ is

  1. 3√2
  2. 1
  3. √6
  4. 2√3

Answer (Detailed Solution Below)

Option 1 : 3√2

Scalar or Dot Product Question 2 Detailed Solution

Calculation: 

b=λa×(a×j^)

⇒ b=λ(2i^2j^+2k^)

⇒ |b|=|a|6=12|λ|λ=±12

(λ=12 rejected b makes acute angle with y axis )

⇒ b=2(i^j^+k^)

⇒ (3a+2b)c|c|=32

Hence, the correct answer is Option 1.

Scalar or Dot Product Question 3:

Let θ be the angle between two unit vectors a and b. if a+2b is perpendicular to 5a4b then what is cos θ + cos 2θ equal to?

  1. 0
  2. 1/2
  3. 1
  4. 3+12

Answer (Detailed Solution Below)

Option 1 : 0

Scalar or Dot Product Question 3 Detailed Solution

Explanation:

Given:

a+2b and 5a4b are perpendicular vectors.

⇒ (a+2b).(5a4b) = 0

⇒ 5|a|24a.b+10a.b8(b)2=0

⇒ 5×1+6a.b8=0

Now a,b are unit vectors

⇒ 6|a||b|Cosθ=3

⇒ 1.1 cosθ =1/2

Cosθ = 1/2 

Now

cos2 θ = Cos2θ -1

= 2× 1/4 -1

12

Now, 

cosθ + cos2θ = 1/2 -1/2 =0

∴The Correct answer is Option a

Scalar or Dot Product Question 4:

If |a+b|=|ab|, then which one of the following is correct?

  1. |a|=|b|
  2. a is parallel to b
  3. a is perpendicular to b
  4. ais a unit vector.
  5. b is unit vector.

Answer (Detailed Solution Below)

Option 3 : a is perpendicular to b

Scalar or Dot Product Question 4 Detailed Solution

Concept:

|ab|2=|a|2+|b|22ab=|a|2+|b|2+2ab4ab¯=|a+b|24ab

a.b=|a|.|b|cosθ

Vector a is perpendicular to b if a.b=0

Calculation:

|a+b|=|ab|

Squaring both sides,

|ab|2=|a+b|2

Now we have,

|ab|2=|a+b|24ab=|a+b|24ab=0ab=0

∴  Vector a is perpendicular to b

Hence, option (3) is correct.

Scalar or Dot Product Question 5:

For the vectors a=i^+j^+k^,b=i^+2j^+3k^(a+b)(ab)= ________.

  1. 11
  2. -11
  3. 5
  4. -5

Answer (Detailed Solution Below)

Option 2 : -11

Scalar or Dot Product Question 5 Detailed Solution

Calculation

Given: a=i+j+k and b=i+2j+3k 

(a+b)(ab)=aaab+babb

 

⇒ (a+b)(ab)=aabb=|a|2|b|2

|a|2=(1)2+(1)2+(1)2=1+1+1=3

|b|2=(1)2+(2)2+(3)2=1+4+9=14

|a|2|b|2=314=11

⇒ (a+b)(ab)=11.

Hence option 2 is correct.

Top Scalar or Dot Product MCQ Objective Questions

If a^,b^,c^, are unit vectors and a^+b^+c^=0 then the value of of a^b^+b^c^+c^a^ is :

  1. -3/2
  2. 0
  3. 2/3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -3/2

Scalar or Dot Product Question 6 Detailed Solution

Download Solution PDF

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are a and b

Dot Product of two vectors is given by:  a.b = |a||b| cos θ

Where |a| = Magnitudes of vectors a, |b| = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 i.i=j.j=k.k=1

i.j=j.i=i.k=k.i=j.k=k.j=0

Calculation:

Given that,

(â + b̂ + ĉ) = 0    ----(1)

We know that,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

⇒ (â + b̂ + ĉ)2 = â ⋅ â + b̂ ⋅ b̂ + ĉ ⋅ ĉ + 2(â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) 

From equation (1), we get

⇒ (1 + 1 + 1) + 2 (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = 0

∴ (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = - 3/2        

If a and b are mutually perpendicular unit vectors, then (3a+2b)(5a6b)=

  1. 5
  2. 3
  3. 6
  4. 12

Answer (Detailed Solution Below)

Option 2 : 3

Scalar or Dot Product Question 7 Detailed Solution

Download Solution PDF

Concept:

If  a and b are mutually perpendicular unit vectors a.b=0=b.a=0

a.a=|a|2,  b.b=|b|2

 

Calculations:

Consider, (3a+2b)(5a6b)

Given  a and b are mutually perpendicular unit vectors.

So,  a.b=0=b.a=0

And   a and b are unit vectors

So, |a|=|b|=1

(3a+2b)(5a6b)

=3a5a+2b5a3a6b2b6b

15|a|212|b|2

= 15 - 12 

= 3

The sum of two vectors a and b is a vector c such that |a|=|b|=|c|=2. Then, the magnitude of ab is equal to:

  1. 23
  2. 2
  3. 3
  4. 0

Answer (Detailed Solution Below)

Option 1 : 23

Scalar or Dot Product Question 8 Detailed Solution

Download Solution PDF

Concept:

Dot Product of two vectors A and B is defined as A.B=|A||B|cosθ, where |A| is the magnitude of vector A.

A.A=|A|2.

Calculation:

We are given that "sum of two vectors a and b is a vector c".

⇒ a+b=c

Taking dot product of both sides with themselves, the magnitudes will still be equal:

⇒ (a+b).(a+b)=(c).(c)

⇒ |a|2+|b|2+2a.b=|c|2

Since |a|=|b|=|c|=2, we get:

⇒ 22+22+2a.b=22

⇒ 4+4+2a.b=4

⇒ 2a.b=4

Now, |ab|2=(ab).(ab)

|a|2+|b|22a.b

= 4 + 4 - (-4)

= 12

⇒ |ab|=12=23.

Find the angle between the vectors a=i^+j^k^ and b=i^j^k^

  1. cos112
  2. cos112
  3. cos113
  4. cos113

Answer (Detailed Solution Below)

Option 3 : cos113

Scalar or Dot Product Question 9 Detailed Solution

Download Solution PDF

Concept:

If a and b are two vectors then a.b=|a||b|cosθ

Note: If vectors a and b are perpendicular to each other then a.b=0

Calculation:

Given: a=i^+j^k^ and b=i^j^k^

Let θ be the angle between the vector a and b

⇒ |a|=3 and |b|=3

We know that, 

a.b=|a||b|cosθ

⇒ (i^+j^k^)(i^j^k^)=3×3×cosθ

⇒ 1 = 3 cos θ 

⇒ cos θ=13 

⇒ θ=cos113

Hence, option 3 is correct.

Find |x| if (xa)(x+a)=12 and a is a unit vector ?

  1. 23
  2. 13
  3. 3
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 13

Scalar or Dot Product Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

  • aa=|a|2
  • ab=ba
  • If a is a unit vector then |a|=1

CALCULATION:

Given: (xa)(x+a)=12 and a is a unit vector

⇒ (xa)(x+a)=|x|2+xaax|a|2=12

As we know that, ab=ba

⇒ (xa)(x+a)=|x|2|a|2=12

As we know that, if a is a unit vector then |a|=1

⇒ |x|2=13|x|=13

Hence, correct option is 2.

If a,b are vectors such that |a+b|=29 and a×(2i^+3j^+4k^)=(2i^+3j^+4k^)×b then possible value of (a+b).(7i^+2j^+3k^) is

  1. 0
  2. 3
  3. 4
  4. 8

Answer (Detailed Solution Below)

Option 3 : 4

Scalar or Dot Product Question 11 Detailed Solution

Download Solution PDF

Concept:

  • The cross product of vector to itself = 0
  • The cross product of collinear vectors = 0
  • The dot product of collinear vectors = Product of their Magnitudes
  • a×b=b×a
  • For dot product (P+Q)R=(PR)+(QR)
  • For cross product (P+Q)×R=(P×R)+(Q×R) 
  • The unit vector in the direction of a P=P^=P|P| 
  • A vector X in direction of P = (Magnitude of X) × P^

 

Calculation:

Given:

a×(2i^+3j^+4k^)=(2i^+3j^+4k^)×b

⇒ a×(2i^+3j^+4k^)(2i^+3j^+4k^)×b=0

⇒ a×(2i^+3j^+4k^)+b×(2i^+3j^+4k^)=0

⇒ \boldsymbol(a+b)×(2i^+3j^+4k^)=0

It means the a+b and 2i^+3j^+4k^ are collinear vectors.

∴ a+b=|a+b|×2i^+3j^+4k^|2i^+3j^+4k^| 

⇒ a+b=29×2i^+3j^+4k^29 

⇒ \boldsymbola+b=2i^+3j^+4k^

(a+b)(7i^+2j^+3k^)=(2i^+3j^+4k^)(7i^+2j^+3k^)

⇒ (a+b)(7i^+2j^+3k^)=(2×(7)+3×2+4×3) 

⇒ (a+b)(7i^+2j^+3k^)=(14+6+12) 

⇒ \boldsymbol(a+b)(7i^+2j^+3k^)=4

Value of  [(a.i^)i^ + (a.j^)j^ + (a.k^)k^].a  will be equal to

  1. 0
  2. |a|2
  3. 2|a|2
  4. 3|a|2

Answer (Detailed Solution Below)

Option 2 : |a|2

Scalar or Dot Product Question 12 Detailed Solution

Download Solution PDF

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are a and b

Dot Product of two vectors is given by:  a.b = |a||b| cos θ

Where |a| = Magnitudes of vectors a, |b| = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 i.i=j.j=k.k=1

i.j=j.i=i.k=k.i=j.k=k.j=0

Calculation:

Let a = x̂i + ŷj + ẑk

 |a| = x2 + y2 + z2

a.̂i = (x̂i + ŷj + ẑk).̂i = x

Similarly, a.̂j = y, a.̂k = z

Therefore [(a.̂i)̂i + (a.̂j)̂j + (a.̂k)̂k]

= xî + yĵ + zk̂ 

Hence, required value of

 [(a.i^)i^ + (a.j^)j^ + (a.k^)k^].a

= (xî + yĵ + zk̂ ).(xî + yĵ + zk̂ )

= x2 + y2 + z2 = |a|2

Find the projection of the vector a=2i^+3j^+2k^ on the vector b=i+2j+k^ ?

  1. 263
  2. 463
  3. 563
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 563

Scalar or Dot Product Question 13 Detailed Solution

Download Solution PDF

CONCEPT:

  • Projection of a vector a on other vector b is given by: ab^=ab|b|

CALCULATION:

Given: a=2i^+3j^+2k^ and b=i+2j+k^

Here, we have to find the projection of a vector a on other vector b is given by: ab^=ab|b|

⇒ ab=2+6+2=10 and |b|=6

⇒ ab^=106=563

Hence, option 3 is correct.

If aandb are two vectors such that |a+b|=|ab|=4, then which one of the following is correct?

  1. aandb must be unit vectors.
  2. a must be parallel to b.
  3. a must be perpendicular to b.
  4. a must be equal to b.

Answer (Detailed Solution Below)

Option 3 : a must be perpendicular to b.

Scalar or Dot Product Question 14 Detailed Solution

Download Solution PDF

CONCEPT:

The scalar product of two vectors a and bis given by ab=|a|×|b|cosθ

If the vectors a and b are perpendicular then ab=0

CALCULATION:

Given: aandb are two vectors such that |a+b|=|ab|=4

⇒ |a+b|2=|ab|2

⇒ (a+b)(a+b)=(ab)(ab)

⇒ |a|2+ab+ba+|b|2=|a|2abba+|b|2

∵ ab=ba

⇒ |a|2+2ab+|b|2=|a|22ab+|b|2

⇒ 4ab=0

⇒ ab=0

So, a must be perpendicular to b.

Hence, correct option is 3.

If ab and c are three vectors in such a way that a+b+c=0 and |a|=1,|b|=4,|c|=2, then the value of 2(a.b+b.c+c.a) is equal to

  1. 21
  2. -21
  3. 19
  4. 212

Answer (Detailed Solution Below)

Option 2 : -21

Scalar or Dot Product Question 15 Detailed Solution

Download Solution PDF

Concept:

The dot product of two vectors a and b is defined as:

a.b=|a|.|b|cos θ

where θ is the angle between vectors a and b.

Some properties of dot products of two vectors are as follows:

  • a.b = b.a (Commutative)
  • a.(b + c) = a.b + a.c (Distributive)

Given:

a+b+c=0

|a|=1,|b|=4,|c|=2

Calculation:

We have a2=1,b2=16,c2=4

(a + b +c)(a + b +c)=0

a2+a.b +a.c +b.a +b2 +b.c +c.a +c.b +c2=0

a2+b2+c2+2(a.b +b.c +c.a)=0

1+16+4+2(a.b +b.c +c.a)=0

21+2(a.b +b.c +c.a)=0

2(a.b +b.c +c.a)=21

Get Free Access Now
Hot Links: teen patti gold teen patti rummy teen patti real cash 2024 teen patti all all teen patti master