If \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors, then \(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})=\)

  1. 5
  2. 3
  3. 6
  4. 12

Answer (Detailed Solution Below)

Option 2 : 3
Free
General Knowledge for All Defence Exams (शूरवीर): Special Live Test
23.2 K Users
20 Questions 20 Marks 16 Mins

Detailed Solution

Download Solution PDF

Concept:

If  \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors \(\rm \vec{a}.\vec{b} = 0= ​​\)\(\rm \vec{b}.\vec{a} = 0\)

\(\rm \vec{a}.\vec{a} = |\vec{a}|^2\),  \(\rm \vec{b}.\vec{b} = |\vec{b}|^2\)

 

Calculations:

Consider, \(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})\)

Given  \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors.

So,  \(\rm \vec{a}.\vec{b} = 0= ​​\)\(\rm \vec{b}.\vec{a} = 0\)

And   \(\rm \vec{a}\) and \(\rm \vec{b}\) are unit vectors

So, \(\rm |\vec{a}|= |\vec{b}| = 1\)

\(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})\)

\(= \rm 3\vec{a}\cdot 5\vec{a}+2\vec{b}\cdot 5\vec{a} -3\vec{a}\cdot6\vec{b}-2\vec{b}\cdot 6\vec{b}\)

\(\rm 15|\vec {a}|^2 - 12 |\vec {b}|^2\)

= 15 - 12 

= 3

Latest Airforce Group X Updates

Last updated on Jul 11, 2025

->Indian Airforce Agniveer (02/2026) Online Form Link has been activated at the official portal. Interested candidates can apply between 11th July to 31st July 2025.

->The Examination will be held 25th September 2025 onwards.

-> Earlier, Indian Airforce Agniveer Group X 2025 Last date had been extended.

-> Candidates applied online from 7th to 2nd February 2025.

-> The online examination was conducted from 22nd March 2025 onwards.

-> The selection of the candidates will depend on three stages which are Phase 1 (Online Written Test), Phase 2 ( DV, Physical Fitness Test, Adaptability Test), and Phase 3 (Medical Examination).

-> The candidates who will qualify all the stages of selection process will be selected for the Air Force Group X posts & will receive a salary ranging of Rs. 30,000.

-> This is one of the most sought jobs. Candidates can also check the Airforce Group X Eligibility here.

More Scalar and Vector Product Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti real teen patti gold downloadable content teen patti bonus