Parallel Vectors MCQ Quiz - Objective Question with Answer for Parallel Vectors - Download Free PDF
Last updated on May 1, 2025
Latest Parallel Vectors MCQ Objective Questions
Parallel Vectors Question 1:
If \(\rm \vec{i} - a\vec{j} + 5\vec{k}\)and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors then b is equal to?
Answer (Detailed Solution Below)
Parallel Vectors Question 1 Detailed Solution
Concept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm \vec{i} - a\vec{j} + 5\vec{k}\) and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors,
Therefore, \(\rm \vec{i} - a\vec{j} + 5\vec{k}= λ (\rm 3\vec{i} - 6\vec{j} + b\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{j} \;and\; \vec{k}\)
⇒ 1 = 3λ, ∴ λ = 1/3
⇒ -a = -6λ
⇒ 5 = bλ .... (1)
Put the value of λ in equation (1), we get
5 = b × (1/3)
So, b = 15
Parallel Vectors Question 2:
Let ABCDEF be a regular hexagon. If \(\rm \vec{AD}=m \vec {BC}\ and\ \vec {CF}=n\vec {AB}\) then what is mn equal to
Answer (Detailed Solution Below)
Parallel Vectors Question 2 Detailed Solution
Calculation:
\( \vec{AB} = 2\vec{FC} \)
⇒ \( \vec{AB} = -2\vec{CF} \)
⇒ \( n = -\frac{1}{2} \)
Also,
\( \vec{AD} = 2\vec{BC} \Rightarrow m = 2 \)
Now,
\( mn = 2 \left( -\frac{1}{2} \right) = -1 \)
∴ The final value of is -1.
Parallel Vectors Question 3:
Let \(P(3,2,6)\) be a point in space and \(Q\) be a point on the line \(\vec{r}=(\hat{i}-\hat{j}+2\hat{k})+\mu(-3\hat{i}+\hat{j}+5\hat{k})\). Then the value of \(\mu\) for which the vector \(\vec{PQ}\) is parallel to the plane \(x-4y+3z=1\) is:
Answer (Detailed Solution Below)
Parallel Vectors Question 3 Detailed Solution
Calculation
Given
\(\vec{r}=(\hat{i}-\hat{j}+2\hat{k})+\mu(-3\hat{i}+\hat{j}+5\hat{k})\)
Any point on the vector \(\vec{r}\) can be taken as,
\( Q \equiv \{ (1-3\mu ),(\mu -1),(5\mu +2)\} \) gives
\(\vec { { P }{ Q } } =\{ -3\mu -2,\mu -3,5\mu -4\} \)
Now, the \(\vec{PQ}\) must be perpendicular to the normal for the given plane.
⇒ \(1(-3\mu -2)-4(\mu -3)+3(5\mu -4)=0\ \)
\(⇒ -3\mu -2-4\mu +12+15\mu -12=0\ \)
\(⇒ 8\mu =2\)
\(⇒ \mu =\dfrac {1}{4}\)
Hence option (1) is correct
Parallel Vectors Question 4:
The value of λ for which the vectors 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂ are parallel is
Answer (Detailed Solution Below)
Parallel Vectors Question 4 Detailed Solution
Concept:
If two vectors a1î + b1ĵ + c1k̂ and a2î + b2ĵ + c2k̂ are parallel then
\(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\).
Calculation:
Given two vectors are 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂.
Given two vectors are parallel.
⇒ \(\frac{3}{2}=\frac{-6}{-4}=\frac{1}{λ }\)
∴ λ = \(\frac{2}{3}\)
The value of λ is \(\frac{2}{3}\).
The correct answer is option 1.
Parallel Vectors Question 5:
Find the unit vector which is paralleled to the addition of two vectors \(\overrightarrow{r_1}\) = \(3\vec{i}-2\vec{j}\) and \(\overrightarrow{r_2}\) = – \(4\vec{i}+4\vec{j}\)
Answer (Detailed Solution Below)
Parallel Vectors Question 5 Detailed Solution
Concept:
The unit vector in the direction of \(\vec{a}\) is given by, \(\hat{a}\) = \(\frac{\vec{a}}{|\vec{a}|}\) where \(|\vec{a}|\) is the magnitude of the vector.
Calculation:
Given, \(\overrightarrow{r_1}\) = \(3\vec{i}-2\vec{j}\) and \(\overrightarrow{r_2}\) = – \(4\vec{i}+4\vec{j}\)
∴ \(\vec{R}\) = \(\vec{r_1}\) + \(\vec{r_2}\) = \(-\vec{i}+2\vec{j}\)
⇒ \(|\vec{R}|\) = \(\sqrt{(-1)^2+2^2}\) = \(\sqrt{5}\)
⇒ Unit vector, \(\hat{R_1}\) = \(\frac{\vec{R}}{|\vec{R}|}\)
= \(\frac{1}{\sqrt{5}}\)(\(-\vec{i}+2\vec{j}\))
∴ The unit vector which is paralleled to the addition of two vectors is \(1/\sqrt5(-\vec{i}+2\vec{j})\).
The correct answer is Option 3.
Top Parallel Vectors MCQ Objective Questions
If \(\rm \vec{i} - a\vec{j} + 5\vec{k}\)and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors then b is equal to?
Answer (Detailed Solution Below)
Parallel Vectors Question 6 Detailed Solution
Download Solution PDFConcept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm \vec{i} - a\vec{j} + 5\vec{k}\) and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors,
Therefore, \(\rm \vec{i} - a\vec{j} + 5\vec{k}= λ (\rm 3\vec{i} - 6\vec{j} + b\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{j} \;and\; \vec{k}\)
⇒ 1 = 3λ, ∴ λ = 1/3
⇒ -a = -6λ
⇒ 5 = bλ .... (1)
Put the value of λ in equation (1), we get
5 = b × (1/3)
So, b = 15
If \(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors then x is equal to?
Answer (Detailed Solution Below)
Parallel Vectors Question 7 Detailed Solution
Download Solution PDFConcept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors,
Therefore, \(\rm x\vec{i} - 2\vec{j} + 3\vec{k} = λ (\rm 2\vec{i} - 4\vec{j} + y\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{i} \;and\; \vec{k}\)
⇒ x = 2λ .... (1)
⇒ -2 = -4λ
∴ λ = 1/2
Put the value of λ in equation (1), we get
x = 2 × (1/2)
So, x = 1
The value of λ for which the vectors 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂ are parallel is
Answer (Detailed Solution Below)
Parallel Vectors Question 8 Detailed Solution
Download Solution PDFConcept:
If two vectors a1î + b1ĵ + c1k̂ and a2î + b2ĵ + c2k̂ are parallel then
\(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\).
Calculation:
Given two vectors are 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂.
Given two vectors are parallel.
⇒ \(\frac{3}{2}=\frac{-6}{-4}=\frac{1}{λ }\)
∴ λ = \(\frac{2}{3}\)
The value of λ is \(\frac{2}{3}\).
The correct answer is option 1.
Find a unit vector parallel to the vector -2î + 3ĵ.
Answer (Detailed Solution Below)
Parallel Vectors Question 9 Detailed Solution
Download Solution PDFConcept:
Unit vector parallel to \(\vec{a}=\hat{a}=\frac{\vec{a}}{\left |\vec{a} \right |}\)
Calculation:
Let \(\vec{a}\) = -2î + 3ĵ
\(\Rightarrow \left | \vec{a} \right |=\sqrt{(-2)^2+3^2}=\sqrt{13}\)
∴ Unit vector parallel to \(\vec{a}=\hat{a}=\frac{\vec{a}}{\left |\vec{a} \right |}\)
\(\Rightarrow \frac{1}{\sqrt{13}}(-2\hat{i}+3\hat{j})\)
\(\Rightarrow \frac{-2\hat{i}}{\sqrt{13}}+\frac{3\hat{j}}{\sqrt{13}}\)
Let ABCDEF be a regular hexagon. If \(\rm \vec{AD}=m \vec {BC}\ and\ \vec {CF}=n\vec {AB}\) then what is mn equal to
Answer (Detailed Solution Below)
Parallel Vectors Question 10 Detailed Solution
Download Solution PDFCalculation:
\( \vec{AB} = 2\vec{FC} \)
⇒ \( \vec{AB} = -2\vec{CF} \)
⇒ \( n = -\frac{1}{2} \)
Also,
\( \vec{AD} = 2\vec{BC} \Rightarrow m = 2 \)
Now,
\( mn = 2 \left( -\frac{1}{2} \right) = -1 \)
∴ The final value of is -1.
Parallel Vectors Question 11:
If \(\rm \vec{i} - a\vec{j} + 5\vec{k}\)and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors then b is equal to?
Answer (Detailed Solution Below)
Parallel Vectors Question 11 Detailed Solution
Concept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm \vec{i} - a\vec{j} + 5\vec{k}\) and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors,
Therefore, \(\rm \vec{i} - a\vec{j} + 5\vec{k}= λ (\rm 3\vec{i} - 6\vec{j} + b\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{j} \;and\; \vec{k}\)
⇒ 1 = 3λ, ∴ λ = 1/3
⇒ -a = -6λ
⇒ 5 = bλ .... (1)
Put the value of λ in equation (1), we get
5 = b × (1/3)
So, b = 15
Parallel Vectors Question 12:
If \(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors then x is equal to?
Answer (Detailed Solution Below)
Parallel Vectors Question 12 Detailed Solution
Concept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors,
Therefore, \(\rm x\vec{i} - 2\vec{j} + 3\vec{k} = λ (\rm 2\vec{i} - 4\vec{j} + y\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{i} \;and\; \vec{k}\)
⇒ x = 2λ .... (1)
⇒ -2 = -4λ
∴ λ = 1/2
Put the value of λ in equation (1), we get
x = 2 × (1/2)
So, x = 1
Parallel Vectors Question 13:
The value of λ for which the vectors 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂ are parallel is
Answer (Detailed Solution Below)
Parallel Vectors Question 13 Detailed Solution
Concept:
If two vectors a1î + b1ĵ + c1k̂ and a2î + b2ĵ + c2k̂ are parallel then
\(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\).
Calculation:
Given two vectors are 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂.
Given two vectors are parallel.
⇒ \(\frac{3}{2}=\frac{-6}{-4}=\frac{1}{λ }\)
∴ λ = \(\frac{2}{3}\)
The value of λ is \(\frac{2}{3}\).
The correct answer is option 1.
Parallel Vectors Question 14:
Find a unit vector parallel to the vector -2î + 3ĵ.
Answer (Detailed Solution Below)
Parallel Vectors Question 14 Detailed Solution
Concept:
Unit vector parallel to \(\vec{a}=\hat{a}=\frac{\vec{a}}{\left |\vec{a} \right |}\)
Calculation:
Let \(\vec{a}\) = -2î + 3ĵ
\(\Rightarrow \left | \vec{a} \right |=\sqrt{(-2)^2+3^2}=\sqrt{13}\)
∴ Unit vector parallel to \(\vec{a}=\hat{a}=\frac{\vec{a}}{\left |\vec{a} \right |}\)
\(\Rightarrow \frac{1}{\sqrt{13}}(-2\hat{i}+3\hat{j})\)
\(\Rightarrow \frac{-2\hat{i}}{\sqrt{13}}+\frac{3\hat{j}}{\sqrt{13}}\)
Parallel Vectors Question 15:
If position vectors of four points A, B and C and D are î + ĵ + k̂, 2î + 3ĵ , 3î + 5ĵ - 2k̂ and k̂ - ĵ respectively, then AB and CD are related as
Answer (Detailed Solution Below)
Parallel Vectors Question 15 Detailed Solution
Given:
\(\vec{A}\) = î + ĵ + k̂,
\(\vec{B}\) = 2î + 3ĵ,
\(\vec{C}\) = 3î + 5ĵ - 2k̂ and,
\(\vec{D}\) = k̂ - ĵ
Concept:
If two vectors \(\vec{a}\) and \(\vec{b}\) are collinear then vectors can be written as a linear expression of other vectors:
\(\rm \vec a=λ\vec b\), where λ = some constant
Calculation:
Consider a vector \(\vec{O}\) with position vector 0î + 0ĵ + 0k̂.
AB = OB - OA
AB = 2î + 3ĵ - î - ĵ - k̂
AB = î + 2ĵ - k̂ -----(1)
Similarly,
CD = OD - OC
CD = k̂ - ĵ - 3î - 5ĵ + 2k̂
CD = - 3î - 6ĵ + 3k̂
CD = -3(î + 2ĵ - k̂) -----(2)
From equatiion (1) & (2), we can see
CD = -3(AB)
So, they are collinear vector
∴ AB and CD are parallel.