Logarithmic Functions MCQ Quiz - Objective Question with Answer for Logarithmic Functions - Download Free PDF

Last updated on Jun 16, 2025

Latest Logarithmic Functions MCQ Objective Questions

Logarithmic Functions Question 1:

logx+logx4+logx9+....+logxn2logx+logx2+logx3+....+logxn is equal to

  1. 2n+13
  2. 2n13
  3. 3(n+2)2
  4. None of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 2n+13

Logarithmic Functions Question 1 Detailed Solution

Concept:

  • log A + log B = log AB
  • log A - log B = log(A/B)
  • log ak = k log a
  • k=1nk=n(n+1)2
  • k=1nk2=n(n+1)(2n+1)6

 

Calculation:

Given,

logx+logx4+logx9+....+logxn2logx+logx2+logx3+....+logxn

⇒ log[x(x4)(x9)....(xn2)]log[x(x2)(x3)...(xn)]

⇒ log[x1+4+9+...n2]log[x1+2+3+...+n]

⇒ log[xk=1nk2]log[xk=1nk]

⇒ k=1nk2 log[x]k=1nk log[x]

⇒ k=1nk2k=1nk 

⇒ n(n+1)(2n+1)6n(n+1)2

⇒ 2n+13

∴ The correct answer is option (1).

Logarithmic Functions Question 2:

If loga(ab) = x then the value of logb(ab).

  1. 1)1/x
  2. 2)x/x+1
  3. 3)x/1-x
  4. 4)x/x-1

Answer (Detailed Solution Below)

Option 1 : 1)1/x

Logarithmic Functions Question 2 Detailed Solution

Correct Answer 1/x

Logarithmic Functions Question 3:

8k = 2 then select the correct option from below? 

  1. logx 8 = 2
  2. logx 2 = 8
  3. log8 2 = x
  4. log2 x = 8

Answer (Detailed Solution Below)

Option 3 : log8 2 = x

Logarithmic Functions Question 3 Detailed Solution

Given:

8k = 2

Formula used:

logb a = c if and only if bc = a

Calculation:

Given: 8k = 2

⇒ log8 2 = x

∴ The correct answer is option (3).

Logarithmic Functions Question 4:

log10 10000 = _______?

  1. 104
  2. 10
  3. 100
  4. 4

Answer (Detailed Solution Below)

Option 4 : 4

Logarithmic Functions Question 4 Detailed Solution

Given:

log10 10000 = ?

Formula used:

logb a = c ⟺ bc = a

Calculation:

log10 10000 = ?

10000 = 104

⇒ log10 10000 = 4

∴ The correct answer is option (4).

Logarithmic Functions Question 5:

If 4x + 22x-1 = 3x+12 + 3x-12 then x =

  1. 12
  2. 32
  3. 52
  4. 1
  5. 18

Answer (Detailed Solution Below)

Option 2 : 32

Logarithmic Functions Question 5 Detailed Solution

Explanation -

We have,

4x+22x1=3x+12+3x12

⇒ 2 × 22x-1 + 22x-13x12 × 3 + 3x12

⇒ 22x-1 (2 + 1) = 3x12 (3 + 1)

⇒ 22x-1 × 3 = 3x12 × 4

⇒ 22x-3 3x32

⇒ (22)x32 = 3x32 

⇒ 4x32 = 3x32 

⇒ x32 = 0 

⇒ x=32

​Hence Option (2) is correct.

Top Logarithmic Functions MCQ Objective Questions

If log3(x4x3)log3(x1)=3 then x is equal to ?

  1. 1
  2. 6
  3. 3
  4. 9

Answer (Detailed Solution Below)

Option 3 : 3

Logarithmic Functions Question 6 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties:  

Product rule: The log of a product equals the sum of two logs.

loga(mn)=logam+logan

Quotient rule: The log of a quotient equals the difference of two logs.

logamn=logamlogan

Power rule: In the log of power the exponent becomes a coefficient.

logamn=nlogam

 

Formula of Logarithms:

If logax=b then x = ab (Here a ≠ 1 and a > 0)

 

Calculation:

Given: log3(x4x3)log3(x1)=3

log3[(x4x3)(x1)]=3        (∵ logamn=logamlogan)

log3[x3(x1)(x1)]=3

log3x3=3

3log3x=3               (∵ logamn=nlogam

log3x=1x=3

Write the logarithmic form of 921/5 = 4.

  1. log924=15
  2. log154=92
  3. log92(15)=3
  4. None of these

Answer (Detailed Solution Below)

Option 1 : log924=15

Logarithmic Functions Question 7 Detailed Solution

Download Solution PDF

Concept:

ab=xlogax=b, where a1 and a > 0 and x be any number.

Calculation:

Given: 921/5 = 4.

As we know that, ab=xlogax=b.

Comparing 921/5 = 4 with ab=x we have,

Here, a = 92, b = 1 / 5 and x = 4.

So, the logarithmic form of 921/5 = 4 is log924=15.

What is the value of log7log7777 equal to?

  1. 3 log2 7
  2. 1 – 3 log2 7
  3. 1 – 3 log7 2
  4. 78

Answer (Detailed Solution Below)

Option 3 : 1 – 3 log7 2

Logarithmic Functions Question 8 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties

  1. Product rule: The log of a product equals the sum of two logs.

loga(mn)=logam+logan

  1. Quotient rule: The log of a quotient equals the difference of two logs.

logamn=logamlogan

  1. Power rule: In the log of a power the exponent becomes a coefficient.

logamn=nlogam

  1. Change of base rule

logmn=loganlogam

If m = n;
logmm=logamlogam=1

  1. logmn=1lognm

 

Calculation:

Here, we have to find the value of log7log7777

log7log7777

= log7 log7 (71/2 × 71/4 × 71/8)

= log7 log7 (7(1/2 + 1/4 + 1/8))

= log7 log7 (7(4 + 2 + 1)/8)

= log7 log7 (77/8)

From power rule;

= log7 (7/8) log77

= log7 (7/8) × 1 = log7 (7/8) = log7 7 – log7 8

= 1 – log7 8 = 1 – log7 23

= 1 – 3 log7 2

If log4(x21)log4(x+1)=1 then x is equal to ?

  1. 1
  2. 2
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Logarithmic Functions Question 9 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties:  

Product rule: The log of a product equals the sum of two logs.

loga(mn)=logam+logan

Quotient rule: The log of a quotient equals the difference of two logs.

logamn=logamlogan

Power rule: In the log of power the exponent becomes a coefficient.

logamn=nlogam

 

Formula of Logarithms:

If logax=b then x = ab (Here a ≠ 1 and a > 0)

 

Calculation:

Given: log4(x21)log4(x+1)=1

log4[(x21)(x+1)]=1        (∵ logamn=logamlogan)

log4[(x1)(x+1)(x+1)]=1

log4(x1)=1

⇒ (x - 1) = 4

∴ x = 5

If log10 2 = 0.3010, then log10 80 = ?

  1. 1.240
  2. 0.9030
  3. 3.010
  4. 1.9030

Answer (Detailed Solution Below)

Option 4 : 1.9030

Logarithmic Functions Question 10 Detailed Solution

Download Solution PDF

Concept:

Logarithms:

  • If ab = x, then we say that loga x = b.
  • loga a = 1.
  • loga (xy) = loga x + loga y.


Calculation:

We know that 80 = 23 × 10.

Changing the given logarithms to log 2, we get:

log10 80

= log10 (23 × 10)

= log10 23 + log10 10

= 3 (log10 2) + 1

= 3(0.3010) + 1

= 1.9030.

If 5x-1 = (2.5)log105, then what is the value of x ?

  1. 1
  2. log102
  3. log10​5
  4. 2log10​5

Answer (Detailed Solution Below)

Option 4 : 2log10​5

Logarithmic Functions Question 11 Detailed Solution

Download Solution PDF

Given:

5x-1 = (2.5)log105

Formula Used:

If ax = n then x = logan

logab = logeb/logea

Calculation:

We have 5x-1 = (2.5)log105

⇒ (2.5)log10= 5x-1 

⇒ log105  = log2.55x-1 

⇒ log105  = (x - 1) log2.55

⇒ (x - 1) = (log105)/(log2.55)

⇒ (x - 1) = log102.5

⇒ x = log102.5 + 1

⇒ x = log102.5 log1010

⇒ x = log1010 × 2.5

⇒ x = log1025

⇒ x = log1052

⇒ x = 2log10​5

∴ The value of x is 2log10​5.

What is the value of log3log333 equal to?

  1. 3 log2 (3)
  2. 1 – 3 log2 (2)
  3. 1 – 2 log3 (2)
  4. 38

Answer (Detailed Solution Below)

Option 3 : 1 – 2 log3 (2)

Logarithmic Functions Question 12 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties

1. Product rule: The log of a product equals the sum of two logs.

loga(mn)=logam+logan

2. Quotient rule: The log of a quotient equals the difference of two logs.

logamn=logamlogan

3. Power rule: In the log of a power the exponent becomes a coefficient.

logamn=nlogam

4. Change of base rule

logmn=loganlogam

If m = n;

⇒ logmm=logamlogam=1

5. logmn=1lognm

Calculation:

Here, we have to find the value of log3log333

Now,

log3log333 = log3 log3 (31/2 × 31/4)

= log3 log3 (3(1/2 + 1/4))

= log3 log3 (3(2 + 1)/4)

= log3 log3 (33/4)

From power rule;

= log3 [(3/4)× log33]                [∵ loga (m) n = n × loga (m)]

= log3 (3/4)                  (∵ logm m = 1)

= log3 (3/4) = log3 3 – log3 4

= 1 – log3 4 = 1 – log3 22

= 1 – 2 log3 2

What is 1log2N+1log3N+1log4N++1log100N equal to (N ≠ 1)?

  1. 1log100!N
  2. 1log99!N
  3. 99log100!N
  4. 99log99!N

Answer (Detailed Solution Below)

Option 1 : 1log100!N

Logarithmic Functions Question 13 Detailed Solution

Download Solution PDF

Concept:

Formula used:

  • logab=1logba
  • Loga M + loga N = loga (MN)


Factorial:

  • n! = 1 × 2 × 3 × ⋯ × (n – 1) × n

 

Calculation:

Using logab=1logba

1log2N+1log3N++1log100N=logN2+logN3++logN100

= logN (2 × 3 × ⋯ × 100)

= logN (100!)

=1log100!N

If x, y, z are three consecutive positive integers, then log (1 + xz) is

  1. log y
  2. log (y/2)
  3. log (2y)
  4. 2 log (y)

Answer (Detailed Solution Below)

Option 4 : 2 log (y)

Logarithmic Functions Question 14 Detailed Solution

Download Solution PDF

Concept:

Logarithm Rule

log m= n log m

 

Calculations:

Let x, y, z are three consecutive positive integers.

⇒ y = x + 1 and z = y + 1

⇒ z = x + 2

Consider, log (1 + xz)

= log [1 + x(x+2)]

= log [1 + x2 + 2x]

= log (1 + x)2

= 2 log (1 + x)

= 2 log y

Hence, If x, y, z are three consecutive positive integers, then log (1 + xz) is 2 log y

The value of {1log960+1log1660+1log2560} is - 

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2

Logarithmic Functions Question 15 Detailed Solution

Download Solution PDF

CONCEPT:

  • By base changing theorem we know that logba=logxalogxb=1logab.
  • log x (x) = 1

CALCULATION:

Given that {1log960+1log1660+1log2560}

By base changing we can write it as - 

⇒ log609 + log6016 +log6025

By product rule of logarithms we can write it again as - 

⇒ log60(9 x 16 x 25) = log60(3600)

⇒ log60 (60)2 = 2 log60(60) = 2

Therefore, option (3) is the correct answer.

Get Free Access Now
Hot Links: teen patti master new version teen patti online game teen patti star login