Question
Download Solution PDFजर \(\tan x=\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta} \) , \(\frac{\pi}{4}<\theta<\frac {\pi}{2} \) , तर √2 sin x किती आहे?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिलेले आहे:
tan x = \(\frac{\sin θ+\cos θ}{\sin θ-\cos θ}\) , \(\frac{\pi}{4}<θ<\frac{\pi}{2 } \)
वापरलेले सूत्र:
1. tan θ = \(\frac{P}{B}\)
2 sin θ = \(\frac{P}{H}\)
3. sin2θ + cos2θ = 1
गणना:
पायथागोरस प्रमेयाद्वारे
⇒ H = \(\sqrt{(sinθ+cosθ)^2+(sinθ-cosθ)^2} \)
⇒ H = \(\sqrt{sin^2θ+cos^2θ+2sinθ cosθ+sin^2θ+cos^2θ-2sinθ cosθ} \)
⇒ H = \(\sqrt{2(sin^2θ+cos^2θ)} \) = \(\sqrt{2} \)
आकृतीनुसार
⇒ \(\sqrt{2} \) sin x = \(\sqrt{2} \) x \(\frac{sinθ+\cosθ}{\sqrt{2}}\) = sinθ + cosθ
∴ \(\sqrt{2} \) sin x चे मूल्य sinθ + cosθ च्या बरोबरीचे आहे.
Last updated on Jul 7, 2025
-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.
-> Candidates can now edit and submit theirt application form again from 7th to 9th July 2025.
-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.
-> Attempt UPSC CDS Free Mock Test to boost your score.
-> Refer to the CDS Previous Year Papers to enhance your preparation.