How many values of θ will satisfy the equation (sin2 θ - 4 sin θ + 3) (4 - cos2 θ + 4 sin θ) = 0, where 0 < θ \(\frac{\pi}{2}\) ?

This question was previously asked in
CDS Elementary Mathematics 3 Sep 2023 Official Paper
View all CDS Papers >
  1. None
  2. Only one
  3. Only two
  4. Only three

Answer (Detailed Solution Below)

Option 1 : None
Free
UPSC CDS 01/2025 General Knowledge Full Mock Test
8.1 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

Given:

(sin2 θ - 4 sin θ + 3) (4 - cos2 θ + 4 sin θ) = 0, 0 < θ \(\frac{\pi}{2}\)

Calculation:

According to the question

(sin2 θ - 4 sin θ + 3) (4 - cos2 θ + 4 sin θ) = 0

⇒ (sin2 θ - 4 sin θ + 3) = 0 OR (4 - cos2 θ + 4 sin θ) = 0

Solving the first equation:

(sin2 θ - 4 sin θ + 3) = 0

⇒ sin2 θ - sin θ - 3 sin θ + 3 = 0

⇒ sin θ (sin θ - 1) - 3 (sin θ - 1) = 0

⇒ (sin θ - 1) (sin θ - 3) = 0

⇒ sin θ = 1 OR sin θ = 3

 θ = 900\(\frac{\pi}{2}\) (∵ -1 < sin θ < 1, neglecting sin θ = 3)

Solving the another equation:

(4 - cos2 θ + 4 sin θ) = 0

⇒ 4 - (1 - sin2 θ) + 4 sin θ = 0

⇒ sin2 θ + 4 sin θ + 3 = 0

⇒ sin2 θ + sin θ + 3 sin θ + 3 = 0

⇒ sin θ (sin θ + 1) + 3 (sin θ + 1) = 0 

⇒ (sin θ + 1) (sin θ + 3) = 0

⇒ sin θ = -1 OR sin θ = -3

⇒ θ = 2700\(\frac{3\pi}{2}\) (∵ -1 < sin θ < 1, neglecting sin θ = -3)

Again, according to the question 0 < θ \(\frac{\pi}{2}\)

∴ The given equation does not satisfy for any value of θ, 0 < θ \(\frac{\pi}{2}\).

Latest CDS Updates

Last updated on Jun 26, 2025

-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.

-> Candidates had applied online till 20th June 2025.

-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.  

-> Attempt UPSC CDS Free Mock Test to boost your score.

-> Refer to the CDS Previous Year Papers to enhance your preparation. 

Get Free Access Now
Hot Links: teen patti king teen patti all game teen patti neta teen patti master online teen patti cash game