Let f : R → be a function given by f(x)={1cos2xx2,x<0 α,x=0 β1cosxx,x>0, where α, β ∈ R. If f is continuous at x = 0, then α2 + β2 is equal to: 

  1. 48
  2. 12
  3. 3
  4. 6

Answer (Detailed Solution Below)

Option 2 : 12

Detailed Solution

Download Solution PDF

Concept:

A function y = f(x) is said to be continuous at a point x = a if limxaf(x)=limxa+f(x) = f(a)

limxasinxx = 1

Explanation:

LHL = f(0-) = limx01cos2xx2 = limx02sin2xx2 = 2limx0(sinxx)2 = 2

RHL = f(0+) = limx0β1cosxxlimx0+β2sinx22x2=β2

Since f(x) is continuous at x = 0

So, LHL = RHL = f(0)

i.e., 2 = β2 = α

So, α = 2 and β = 2√2

∴ α2+β2=4+8=12

Option (2) is true.

Get Free Access Now
Hot Links: teen patti gold apk download teen patti master real cash teen patti club teen patti master 2023