If f(x) = {mx+1, if xπ2sinx+n, if x>π2, is continuous at x = π2, then

  1. m = 1, n = 0
  2. m = nπ2 + 1
  3. n = mπ2
  4. m = n = π2

Answer (Detailed Solution Below)

Option 3 : n = mπ2

Detailed Solution

Download Solution PDF

Concept:

A function f(x) is continuous at x = a, if limxa f(x) = limxa+f(x) = f(a).

Calculation:

Given: f(x) = {mx+1, if xπ2sinx+n, if x>π2

f(π2) = m × π2 + 1

Left-hand limit = limh0f(π2h)

=limh0m×(π2h)+1

Applying the limits:

Left- hand limit = m × π2 + 1

Right-hand limit = limh0f(π2+h)

=limh0sin(π2+h)+n

Applying the limits:

 =sinπ2+n

Right-hand limit = 1 + n

For the function to be continuous at x = π2,

Left-hand limit = Right-hand limit = f(π/2)

⇒ m× π2 + 1 = 1 + n

⇒ n = mπ2

The correct answer is n = mπ2 .

Get Free Access Now
Hot Links: teen patti plus teen patti yes teen patti real cash game