यदि  (b - c)2, (c - a)2, (a - b)2 A.P.में हैं,

तब \(\dfrac{1}{b-c},\dfrac{1}{c-a},\dfrac{1}{a-b}\)  ________ में होगा।

This question was previously asked in
UP TGT Mathematics 2021 Official Paper
View all UP TGT Papers >
  1. H.P.
  2. G.P.
  3. A.P.
  4. इनमें से कोई भी नहीं

Answer (Detailed Solution Below)

Option 3 : A.P.
Free
UP TGT Arts Full Test 1
7.1 K Users
125 Questions 500 Marks 120 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

A.P में सामान्य अंतर समान है। अर्थात यदि a, b, c AP में हैं, तो

b - a = c - b

गणना:

दिया गया:

(b - c)2, (c - a)2, (a - b)2 are in A.P

⇒ (c - a)2 - (b - c)2 = (a - b)2 - (c - a)2 

(c - a + b - c)(c - a - b + c) = (a - b + c - a)(a - b - c + a)

(b - a)(2c - a - b) = (c - b)(2a - b - c)   ...(i)

अब, \(\dfrac{1}{b-c},\dfrac{1}{c-a},\dfrac{1}{a-b}\)

\(\dfrac{1}{c-a} - \dfrac{1}{b-c}=\dfrac{1}{a-b} - \dfrac{1}{c-a}\)

\(\dfrac{b-c-c+a}{(c-a)(b-c)} =\dfrac{c-a-a+b}{(a-b)(c-a)}\)

\(\dfrac{b+a-2c}{b-c} =\dfrac{c+b-2a}{a-b}\)

(b + a - 2c)(a - b) = (c + b - 2a)(b - c)

(b - a)(2c - a - b) = (c - b)(2a - b - c)   ...(ii)

चूंकि समीकरण (i) और (ii) बराबर हैं,

इसलिए \(\dfrac{1}{b-c},\dfrac{1}{c-a},\dfrac{1}{a-b}\) AP में है

Latest UP TGT Updates

Last updated on May 6, 2025

-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.

-> The UP TGT Notification (2022) was released for 3539 vacancies.

-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh. 

-> Prepare for the exam using UP TGT Previous Year Papers.

More Arithmetic Progressions Questions

More Sequences and Series Questions

Get Free Access Now
Hot Links: teen patti game online teen patti 50 bonus teen patti tiger teen patti diya teen patti real money app