प्रतिलोम त्रिकोणमितीय फलन \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) का डोमेन ज्ञात कीजिए। 

  1. \(\left[ { - 1,1} \right]\)
  2. \(\left[ {0,\frac{1}{2}} \right]\)
  3. \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)
  4. \(\left[ { - \frac{1}{2},\frac{1}{2}} \right]\)

Answer (Detailed Solution Below)

Option 3 : \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

प्रतिलोम sine फलन sin x का डोमेन, \(x \in \left[ { - 1,1} \right]\) है। 

गणना:

फलन \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) के डोमेन की गणना इस प्रकार की जाती है:

\(1 - {x^2} \geq 0\)

⇒ \(x \in \left[ { - 1,1} \right]\)      ...(1)

साथ ही, 

\(- 1 \le 2x\sqrt {1 - {x^2}} \le 1\)

\( - \frac{1}{2} \le x\sqrt {1 - {x^2}} \le \frac{1}{2}\)

  • x प्राप्त करने के लिए इसका वर्ग करने पर,

\(0 \leq {x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

अब, 

\( {x^2}\left( {1 - {x^2}} \right) \geq 0\) और \({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

  • यहाँ हमें x का उभयनिष्ठ मान ज्ञात करना हैं।

 \( {x^2}\left( {1 - {x^2}} \right) \geq 0\) के लिए,

यहाँ, x का मान जिसके लिए LHS अपना चिह्न बदलेगा -1 और 1 होगा, इसलिए उपरोक्त असमानता के लिए x का मान,

⇒ \(x \in \left[ { - 1,1} \right]\)      ....(2)

यहाँ,

\({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

\(t - {t^2} - \frac{1}{4} \le 0\)

\({\left( {t - \frac{1}{2}} \right)^2} \le 0\)

\(t \le \frac{1}{2}\)

\({x^2} \le \frac{1}{{\sqrt 2 }}\)

\(x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)        ....(3)

  • समीकरण 1, 2 और 3 से सभी उभयनिष्ठ अंतराल लीजिए,

हमें प्राप्त होगा,

\(\Rightarrow x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Inverse Trigonometric Functions Questions

Get Free Access Now
Hot Links: teen patti real teen patti master download real teen patti teen patti comfun card online