বিপরীত ত্রিকোণমিতিক ফাংশন \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) এর ডোমেইন নির্ণয় করুন।

  1. \(\left[ { - 1,1} \right]\)
  2. \(\left[ {0,\frac{1}{2}} \right]\)
  3. \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)
  4. \(\left[ { - \frac{1}{2},\frac{1}{2}} \right]\)

Answer (Detailed Solution Below)

Option 3 : \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

ধারণা:

বিপরীত sine ফাংশনের ডোমেইন, sin x হল \(x \in \left[ { - 1,1} \right]\)

গণনা:

ফাংশনের ডোমেনের গণনা নিম্নরূপের ন্যায় করা হয়:

\({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\)

\(- 1 \le 2x\sqrt {1 - {x^2}} \le 1\)

\( - \frac{1}{2} \le x\sqrt {1 - {x^2}} \le \frac{1}{2}\)

\({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

\(t - {t^2} - \frac{1}{4} \le 0\)

\({\left( {t - \frac{1}{2}} \right)^2} \le 0\)

\(t \le \frac{1}{2}\)

\({x^2} \le \frac{1}{{\sqrt 2 }}\)

\(x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)

Latest NDA Updates

Last updated on May 30, 2025

->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.

-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti master apk best teen patti real cash withdrawal teen patti master king teen patti jodi teen patti bliss