Question
Download Solution PDFबहुपद x4 − 10x2 + 22 के गुणनखंड दो द्विघात बहुपदों के गुणनफल के रूप में ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
बहुपद: x4 − 10x2 + 22
प्रयुक्त सूत्र:
द्विघात सूत्र: समीकरण ax2 + bx + c = 0 के लिए, x = \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
गणना:
माना, y = x2 है, दिए गए बहुपद को y में एक द्विघात समीकरण के रूप में लिखा जा सकता है:
y2 - 10y + 22 = 0
y के लिए मूल ज्ञात करने के लिए द्विघात सूत्र का उपयोग करने पर, जहाँ a = 1, b = -10, c = 22 है:
y = \(\frac{-(-10) \pm \sqrt{(-10)^2 - 4 \times 1 \times 22}}{2 \times 1}\)
⇒ y = \(\frac{10 \pm \sqrt{100 - 88}}{2}\)
⇒ y = \(\frac{10 \pm \sqrt{12}}{2}\)
⇒ y = \(\frac{10 \pm 2\sqrt{3}}{2}\)
⇒ y = 5 \(\pm\) \(\sqrt{3}\)
इसलिए, y के दो मूल हैं:
y1 = 5 + \(\sqrt{3}\)
y2 = 5 - \(\sqrt{3}\)
इसलिए, y में द्विघात को इस प्रकार गुणनखंडित किया जा सकता है:
(y - y1)(y - y2) = (y - (5 + \(\sqrt{3}\)))(y - (5 - \(\sqrt{3}\)))
वापस y = x2 प्रतिस्थापित करें:
(x2 - (5 + \(\sqrt{3}\)))(x2 - (5 - \(\sqrt{3}\)))
∴ बहुपद x4 − 10x2 + 22 का दो द्विघात बहुपदों के गुणनफल में गुणनखंड (x2 - (5 + \(\sqrt{3}\)))(x2 - (5 - \(\sqrt{3}\))) है।
Last updated on Jul 17, 2025
-> RRB NTPC Under Graduate Exam Date 2025 has been released on the official website of the Railway Recruitment Board.
-> The RRB NTPC Admit Card will be released on its official website for RRB NTPC Under Graduate Exam 2025.
-> UGC NET Result 2025 out @ugcnet.nta.ac.in
-> HSSC CET Admit Card 2025 has been released @hssc.gov.in
-> Candidates who will appear for the RRB NTPC Exam can check their RRB NTPC Time Table 2025 from here.
-> The RRB NTPC 2025 Notification released for a total of 11558 vacancies. A total of 3445 Vacancies have been announced for Undergraduate posts like Commercial Cum Ticket Clerk, Accounts Clerk Cum Typist, Junior Clerk cum Typist & Trains Clerk.
-> A total of 8114 vacancies are announced for Graduate-level posts in the Non-Technical Popular Categories (NTPC) such as Junior Clerk cum Typist, Accounts Clerk cum Typist, Station Master, etc.
-> Prepare for the exam using RRB NTPC Previous Year Papers.
-> Get detailed subject-wise UGC NET Exam Analysis 2025 and UGC NET Question Paper 2025 for shift 1 (25 June) here
->Bihar Police Driver Vacancy 2025 has been released @csbc.bihar.gov.in.