Question
Download Solution PDFধরা যাক, f : R → R-কে c ∈ R এবং f(c) = 0-তে পার্থক্য করা যায়। যদি g(x) = |f(x)| হয়, তাহলে x = c, g কত?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDF\({\rm{g'}}\left( {\rm{c}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{c}}} \frac{{{\rm{g}}\left( {\rm{x}} \right)}}{{\rm{x}}} - \frac{{{\rm{g}}\left( {\rm{c}} \right)}}{{\rm{x}}}\)
\(\Rightarrow {\rm{g'}}\left( {\rm{c}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{c}}} \frac{{\left| {f\left( x \right)} \right| - \left| {f\left( c \right)} \right|}}{{x - c}}\)
যেহেতু, f(c) = 0
অতএব, \({\rm{g'}}\left( {\rm{c}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{c}}} \frac{{\left| {f\left( {\rm{x}} \right)} \right|}}{{x - c}}\)
\(\Rightarrow {\rm{g'}}\left( {\rm{c}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{c}}} \frac{{f\left( x \right)}}{{x - c}};\) যদি f(x) > 0
এবং \({\rm{g'}}\left( {\rm{c}} \right) = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{c}}} \frac{{ - f\left( {\rm{x}} \right)}}{{{\rm{x}} - {\rm{c}}}}\) ; যদি f(x) < 0 হয়
⇒ g'(c) = f'(c) = -f'(c)
= f'(c) + f'(c)
⇒ 2f'(c) = 0
⇒ f'(c) = 0
সুতরাং, f'(c) = 0 হলে g(x) পার্থক্যযোগ্যLast updated on May 23, 2025
-> JEE Main 2025 results for Paper-2 (B.Arch./ B.Planning) were made public on May 23, 2025.
-> Keep a printout of JEE Main Application Form 2025 handy for future use to check the result and document verification for admission.
-> JEE Main is a national-level engineering entrance examination conducted for 10+2 students seeking courses B.Tech, B.E, and B. Arch/B. Planning courses.
-> JEE Mains marks are used to get into IITs, NITs, CFTIs, and other engineering institutions.
-> All the candidates can check the JEE Main Previous Year Question Papers, to score well in the JEE Main Exam 2025.