Ordinary Differential Equations MCQ Quiz in తెలుగు - Objective Question with Answer for Ordinary Differential Equations - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 15, 2025

పొందండి Ordinary Differential Equations సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Ordinary Differential Equations MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Ordinary Differential Equations MCQ Objective Questions

Top Ordinary Differential Equations MCQ Objective Questions

Ordinary Differential Equations Question 1:

For the ordinary differential equation

\((x-1) \frac{d^2 y}{d x^2}\) + \((\cot \pi x) \frac{d y}{d x}\) + \(\left(\operatorname{cosec}^2 \pi x\right) y=0\)

which of the following statement is true?

  1. 0 is regular and 1 is irregular.
  2. 0 is irregular and 1 is regular. 
  3. Both 0 and 1 are regular.
  4. Both 0 and 1 are irregular.

Answer (Detailed Solution Below)

Option 1 : 0 is regular and 1 is irregular.

Ordinary Differential Equations Question 1 Detailed Solution

Solution:

 Given Ordinary Differential equation is 

\((x-1)y''+(cot\pi x)y'+ (cosec^2\pi x)y = 0\)

Dividing (x-1) in L.H.S and R.H.S 

\(y''+\frac{(cot\pi x)y'}{x-1}+\frac {(cosec^2\pi x)y}{x-1}\) = 0

Now for x = 0 

\(\lim_{x\rightarrow0}\frac{ (x-0)(cot\pi x )}{x-1} \) (0/0 form)

Using L' Hospital we get 

\(\lim_{x\rightarrow 0} \frac{xcos\pi x}{(x-1)(sin\pi x)} \) (0/0 form)

Again using L' Hospital form we get

L= \(\frac{-1}{\pi}\) 

now, \(lim_{x\rightarrow0} \frac{x^2cosec^2\pi x}{x-1} = \frac{2}{-2\pi^2}\)

for x=1 

\(lim_{x\rightarrow 1}\frac{x-1cot\pi x}{x-1} = \infty\)

so, 0 is regular point where 1 is irregular 

Therefore Option 1 is correct . 

Ordinary Differential Equations Question 2:

If y(x) = v(x)sec(x) be the solution of y'' - (2tan x)y' + 5y = 0, - \(\frac{\pi}{2}\) < x < \(\frac{\pi}{2}\), satisfying y(0) = 0 and y'(0) = √6 then v(\(\frac{\pi}{6\sqrt6}\)) is 

  1. 0.2
  2. 0.4
  3. 0.5
  4. 1

Answer (Detailed Solution Below)

Option 3 : 0.5

Ordinary Differential Equations Question 2 Detailed Solution

Explanation:

y(x) = v sec(x) ⇒ y' = v' sec x + v sec x tan x

⇒ y'' = v'' sec x + v' sec x tan x + v' sec x tan x + v sec x tan2 x + v sec3 x

Substituting these values in the given differential equation 

y'' - (2tan x)y' + 5y = 0

⇒ v'' sec x + v' sec x tan x + v' sec x tan x + v sec x tan2 x + v sec3 x - 2 v' sec x tan x - 2 v sec x tan2 x + 5v sec(x) = 0

⇒ v'' sec x + v sec3 x - v sec x tan2 x + 5v sec(x) = 0  

⇒ v'' sec x + v sec x(sec2 x - tan2 x + 5) = 0

⇒ v'' sec x + 6v sec x = 0 (∵ sec2 x - tan2 x = 1)

⇒ v'' + 6v = 0

⇒ v = c1 cos(√6 x) + c2 sin(√6 x) ...(i)

Given y(0) = 0 and y'(0) = √6 ⇒ v(0) = 0 and v'(0) = √6

Substituting initial conditions 

 v(0) = 0  ⇒ c1 = 0

So v = c2 sin(√6 x)

v' = c2 √6 cos(√6 x)

v'(0) = √6 ⇒ c2 √6 = √6 ⇒ c2 = 1

Hence v = sin(√6 x)

∴ v(\(\frac{\pi}{6\sqrt6}\)) =  sin(√6 \(\frac{\pi}{6\sqrt6}\)) = sin(\(\frac{\pi}{6}\)) = 0.5

∴ Option (3) is correct

Ordinary Differential Equations Question 3:

Consider the system of ordinary differential equations

\(\frac{dx}{dt}=\) 4x3y2 - x5y4,

\(\frac{dy}{dt}=\) x4y5 + 2x2y3.

Then for this system there exists 

  1. a closed path in {(x, y)  2|x2 + y2 ≤ 5}
  2. a closed path in {(x, y)  2|5 < x2 + y2 ≤ 10}
  3. a closed path in {(x, y)  2|x2 + y2 > 10}    
  4. no closed path in 2

Answer (Detailed Solution Below)

Option 4 : no closed path in 2

Ordinary Differential Equations Question 3 Detailed Solution

Concept:

Bendixon's Criterion: If fx and gy are continuous in a simply connected region 2 and fx + gx ≠ 0 then the system of differential equations

\(\frac{dx}{dt}\) = f(x,y)

\(\frac{dy}{dt}\) = g(x,y)​

has no closed trajectories inside 

Explanation:

Here f(x,y) = 4x3y2 - x5yg(x,y) = x4y5 + 2x2y3

f= 12x2y2 - 5x4y4, g= 5x4y4 + 6x2y2

Both fx and gy are continuous and 

 fx + gx = 12x2y2 - 5x4y+ 5x4y4 + 6x2y= 18x2y2  ≠ 0 in whole ℝ2 as it is zero on (0,0) only.

Hence by Bendixsion Criterion, there is no closed path in 2

Option (4) is correct.

Ordinary Differential Equations Question 4:

If y(x) is a solution of the equation

4xy" + 2y' + y = 0

Satisfying y(0) = 1. Then y" (0) is equal to

  1. 1/24
  2. 1/12
  3. 1/6
  4. 1/2

Answer (Detailed Solution Below)

Option 2 : 1/12

Ordinary Differential Equations Question 4 Detailed Solution

Concept:

  • Ordinary Point: A point x = x0 is called an ordinary point of differential equation y'' + P(x)y' + Q(x) = 0, if P(x) and Q(x) are both analytical at x = x0.
  • A singular point x = x0 is called regular singular point if both (x - x0)P(x) and (x - x0)2Q(x) are analytic at x = x0. Otherwise it is called irregular singular point.

  • The indicial equation in variable m for regular singular point x0 is represented by m(m - 1) + pm + q = 0, where p =\(\lim_{x\to x_0}(x - x_0)P(x)\)  and q = \(\lim_{x\to x_0}(x - x_0)^2Q(x)\).

Calculation:

We have, 4xy" + 2y' + y = 0

⇒ \(y''+\frac{1}{2x}\frac{dy}{dx}+\frac{1}{4x}y=0\) 

⇒ P(x) = \(\frac{1}{2x}\) and Q(x) = \(\frac{1}{4x}\)

⇒ x = 0 is a singular point.

Also, \(\lim_{x\to 0}xP(x)\) = \(\lim_{x\to 0}x(\frac{1}{2x})\) = \(\frac{1}{2}\) = p

\(\lim_{x\to 0}x^2Q(x)\) = \(\lim_{x\to 0}x^2(\frac{1}{4x})\) = 0 = q

⇒ x = 0 is a regular singular point.

Now, indicial equation for the given differential equation is given by m(m - 1) + pm + q = 0

⇒ \(m^2-m+\frac{m}{2}=0\)

⇒ \(m^2-\frac{m}{2}=0\)

⇒ \(m = 0, \frac{1}{2}\) [Distinct roots]

Therefore, we get two independent solutions corresponding to two different value of m.

Since, x = x0 is regular singular point, we have to use Forbenious method to get the required solution.

Let, \(y =\sum_{n=0}^{\infty} a_n x^{m+n}\)

⇒ \(y' =\sum_{n=0}^{\infty}(m+n) a_n x^{m+n-1}\)

⇒ \(y'' =\sum_{n=0}^{\infty}(m+n)(m+n-1) a_n x^{m+n-2}\)

Substituting the values of y, y' and y" in the given equation, we have,

\(4 x \sum_{n=0}^{\infty}(m+n)(m+n-1) a_n x^{m+n-2}\)

\(+2 \sum_{n=0}^{\infty}(m+n) a_n x^{m+n-1}+\sum_{n=0}^{\infty} a_n x^{m+n}\) = 0

⇒ \(\sum_{n=0}^{\infty} 4(m+n)(m+n-1) a_n x^{m+n-1}\)

\(+\sum_{n=0}^{\infty} 2(m+n) a_n x^{m+n-1}+\sum_{n=0}^{\infty} a_n x^{m+n}\) = 0

Shifting the index of first two terms to m+n, we have

⇒ \(\sum_{n=0}^{\infty} 4(m+n+1)(m+n) a_{n+1} x^{m+n}\)

\(+\sum_{n=0}^{\infty} 2(m+n+1) a_{n+1} x^{m+n} +\sum_{n=0}^{\infty} a_n x^{m+n}\) = 0

In general, equating co-efficient of \(x^{m+n}\) to zero, we have

⇒ \([4(m+n+1)(m+n)+2(m+n+1)] a_{n+1}+a_n=0\)

⇒ \(a_{n+1}=\frac{a_n}{[4(m+n+1)(m+n)+2(m+n+1)]}, n \geq 0\)

When m = 0:

\(a_{n+1}=\frac{a_n}{[4(n+1)(n)+2(n+1)]}, n\geq0\)

\(a_1=\frac{a_0}{2}\)

\(a_2=\frac{a_1}{12}=\frac{a_0}{24}\), and so on.

Therefore, when m=0, one of the solution of y(x) is

\(y(x)=x^0(a_0+a_1 x+a_2 x^2+\cdots )\)

⇒ \(y(x)=a_0+\frac{a_0}{2}+\frac{a_0}{24} x^2+\cdots .\)

Substituting the initial condition y(0) = 1, we get a0 = 1

∴ \( y(x)=1+\frac{x}{2}+\frac{x^2}{24}+\cdots \)

⇒ \(y'(x)=\frac{1}{2}+\frac{x}{12}+\cdots\)

⇒ \(y''(x)=\frac{1}{12}+\underbrace{\cdots \cdots \cdots}_{\text {higher power of } x}\)

∴ \(y''(0)=\frac{1}{12}\)

The correct answer is Option 2.

Ordinary Differential Equations Question 5:

The initial value problem

\(\rm \frac{dy}{dx}=\cos(xy),\) x ∈ ℝ, y(0) = y0,

where y0 is a real constant, has

  1. a unique solution
  2. exactly two solutions
  3. infinitely many solutions
  4. no solution

Answer (Detailed Solution Below)

Option 1 : a unique solution

Ordinary Differential Equations Question 5 Detailed Solution

Concept:

Picard’s Existence and Uniqueness Theorem: Consider the Initial Value Problem (IVP) \(\rm \frac{dy}{dx}=f(x, y)\), y(x0) = y0, suppose that f(x, y) and \(\frac{\partial f}{\partial y}\) are continuous functions in some open rectangle R = {(x, y): a < x < b, c < y < d} that contains the point (x0, y0) . Then the IVP has a unique solution in some closed interval I = [x0 - h,x0 + h] where h > 0.

Explanation: 

\(\rm \frac{dy}{dx}=\cos(xy),\) x ∈ ℝ, y(0) = y0,

Here f(x, y) = cos(xy)

\(\frac{\partial f}{\partial y}\)(x, y) = - x sin(xy)

Both are continuous in a open rectangular region R = {(x, y): a < x < b, c < y < d} containing (0, y0) 

Now, |\(\frac{\partial f}{\partial y}\)(x, y)| = |-x sin(xy)| = |x||sin(xy)| ≤ |x| < b (as |sin(xy)| ≤ 1 for all x, y ℝ)

Hence by Picard’s existence and uniqueness theorem, 

the given IVP has a unique solution

Option (1) is true

Ordinary Differential Equations Question 6:

Consider the initial value problem

\(\frac{dy}{dx}+\alpha y=0\),

y(0) = 1, 

where α ∈ ℝ. Then

  1. there is an α such that y(1) = 0
  2. there is a unique α such that \(\displaystyle\lim_{x \rightarrow \infty}\) y(x) = 0
  3. there is NO α such that y(2) = 1
  4. there is a unique α such that y(1) = 2

Answer (Detailed Solution Below)

Option 4 : there is a unique α such that y(1) = 2

Ordinary Differential Equations Question 6 Detailed Solution

Solution: 

Given differential equation 

\(\frac{dy}{dx}+α y\) = 0, y(0) = 1 where \(α \in R\)

\(\frac{dy}{dx} = -α y \)

by using variable separable form 

\(\frac{dy}{y} = -α dx \)

Integrate, both sides 

log y = - αx + log c1

y = \(c_1e^{-α x}\)  

Given initial condition y(1) = 0 then, \(c_1 = 1\) 

So, the solution is

y = \(e^{-α x}\)

(1): y(1) = \(e^{-α}\) ≠ 0 for any α

So there does not exist an α such that y(1) = 0

(1) is false

(2): \(\displaystyle\lim_{x \rightarrow \infty}\)y(x) = \(\displaystyle\lim_{x \rightarrow \infty}\)\(e^{-α x}\) = 0 for all α > 0

So, there is no unique α such that \(\displaystyle\lim_{x \rightarrow \infty}\) y(x) = 0

(2) is false

(3): y(2) = 1

⇒ \(e^{-2α}\) = 1 ⇒ α = 0 

There is a α such that y(2) = 1

(3) is false

(4): y(1) = 2

⇒ \(e^{-α}\) = 2 ⇒ - α = log(2) ⇒ α = - log(2) 

Hence there is a unique α such that y(1) = 2

(4) is correct

Ordinary Differential Equations Question 7:

Let y0 > 0, z0 > 0 and α > 1. 

(\(\left\{\begin{array}{l}\frac{d y}{d t}=y^{\alpha} \quad \text { for } t>0, \\ y(0)=y_{0}\end{array}\right.\)

(∗∗\(\left\{\begin{array}{l}\frac{d z}{d t}=-z^{\alpha} \quad \text { for } t>0, \\ z(0)=z_{0}\end{array}\right.\)

We say that the solution to a differential equation exists globally if it exists for all t > 0. 

Which of the following statements is true? 

  1. Both (∗) and (∗∗) have global solutions
  2. None of (∗) and (∗∗) have global solutions
  3. There exists a global solution for (∗) and there exists a T < ∞ such that \(\displaystyle\lim _{t \rightarrow T}|z(t)|=+\infty\)
  4. There exists a global solution for (∗∗) and there exists a T < such that \(\displaystyle \lim _{t \rightarrow T}|y(t)|=+\infty\)

Answer (Detailed Solution Below)

Option 4 : There exists a global solution for (∗∗) and there exists a T < such that \(\displaystyle \lim _{t \rightarrow T}|y(t)|=+\infty\)

Ordinary Differential Equations Question 7 Detailed Solution

Explanation:

y0 > 0, z0 > 0 and α > 1. 

(\(\left\{\begin{array}{l}\frac{d y}{d t}=y^{α} \quad \text { for } t>0, \\ y(0)=y_{0}\end{array}\right.\)

(∗∗\(\left\{\begin{array}{l}\frac{d z}{d t}=-z^{α} \quad \text { for } t>0, \\ z(0)=z_{0}\end{array}\right.\)

Let us assume α = 2

then (∗) 

 \(\frac{d y}{d t}=y^{2}, y(0)=y_{0}\) 

⇒ \(\frac{dy}{y^2}\) = dt

⇒ \(-\frac{1}{y}\) = t + c (integrating)

Using y(0) = y0 we get

c = \(-\frac{1}{y_0}\)

⇒ \(-\frac{1}{y}\) = t \(-\frac{1}{y_0}\)

⇒ y = \(-\frac{y_o}{1-ty_0}\)

y is not defined if

1 - ty0 = 0 ⇒ t = \(\frac{1}{y_0}\) > 0  as  y0 > 0

So (∗) does not have a global solution.

(1), (2) are false

\(\lim_{t\to\frac{1}{y_0}}|y(t)|=+\infty\)

(4) is correct

If we check (∗∗) by taking α = 2 we can see that (3) is false

Ordinary Differential Equations Question 8:

Consider the ordinary differential equation y" + P(x)y' + Q(x)y = 0 where P and Q are smooth functions. Let y1 and y2 be any two solutions of the ODE. Let W(x) be the corresponding Wronskian. Then which of the following is always true?

  1. If y1 and y2 are linearly dependent then ∃ x1, x2 such that W(x1) = 0 and W(x2) ≠ 0
  2. If y1 and y2 are linearly independent then W(x) = 0 ∀ x
  3. If y1 and y2 are linearly dependent then W(x) ≠ 0 ∀ x
  4. If y1 and y2 are linearly independent then W(x) ≠ 0 ∀ x

Answer (Detailed Solution Below)

Option 4 : If y1 and y2 are linearly independent then W(x) ≠ 0 ∀ x

Ordinary Differential Equations Question 8 Detailed Solution

Concept:

(i) If y1 and y2 are linearly independent then W(x) ≠ 0 ∀ x

(ii) If y1 and y2 are linearly dependent then W(x) = 0 ∀ x

Explanation:

By direct result, (4) is correct only

Ordinary Differential Equations Question 9:

Suppose x : [0, ∞) → [0, ∞) is continuous and x(0) = 0. If (x(t)2 ≤ 2 + \(\int_{0}^{t} \) x(s) ds, ∀t ≥ 0, then which of the following is TRUE?

  1. x(√2) ∈ [0, 2] 
  2. \(\rm x(\sqrt{2}) \in\left[0, \frac{3}{\sqrt{2}}\right]\)
  3. \(\rm x(\sqrt{2}) \in\left[\frac{5}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right] \)
  4. x(√2)[10, ∞)

Answer (Detailed Solution Below)

Option 1 : x(√2) ∈ [0, 2] 

Ordinary Differential Equations Question 9 Detailed Solution

Explanation:

(x(t)2 ≤ 2 + \(\int_{0}^{t} \) x(s) ds, ∀ t ≥ 0.....(i)

x : [0, ∞) → [0, ∞) is continuous and x(0) = 0

Let x(t) = t so it is continuous and x(0) = 0

So from (i) we get

t2 ≤ 2 + \(\int_{0}^{t} \) s ds

⇒ t2 ≤ 2 + t2/2

⇒ t2/2 < 2

⇒ t< 4

⇒ - 2 < t < 2

⇒ - 2 < x(t) < 2

So (2), (3), (4) discard

(1) is correct 

Ordinary Differential Equations Question 10:

Let \(\rm \left|\frac{dy}{dx}\right|+|y|=0\), y = y(x). Find the Number of solutions.

  1. 1
  2. 2
  3. 3
  4. 4

Answer (Detailed Solution Below)

Option 1 : 1

Ordinary Differential Equations Question 10 Detailed Solution

Explanation:

\(\rm \left|\frac{dy}{dx}\right|+|y|=0\)

Let y(x) be any non-constant solution 

⇒ ∃ x ∈ \(\mathbb R\) such that

 y(x0) ≠ 0

i.e., |y(x0)| > 0

then at x0\(\rm \left|\frac{dy}{dx}\right|+|y|>0\) contradiction

So it has no non-constant solution

If y(x) = 0 then \(\rm \left|\frac{dy}{dx}\right|+|y|=0\)

So given ODE has only trivial solution 

(1) is correct

Get Free Access Now
Hot Links: lotus teen patti teen patti master gold download teen patti master apk download teen patti joy official teen patti master 2025