Linear Algebra MCQ Quiz in తెలుగు - Objective Question with Answer for Linear Algebra - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 15, 2025

పొందండి Linear Algebra సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Linear Algebra MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Linear Algebra MCQ Objective Questions

Top Linear Algebra MCQ Objective Questions

Linear Algebra Question 1:

Let (-, -) be a symmetric bilinear form on ℝ2 such that there exist nonzero v, w ∈ ℝ2 such that (v, v) > 0 > (w, w) and (v, w) = 0. Let A be the 2 × 2 real symmetric matrix representing this bilinear form with respect to the standard basis. Which one of the following statements is true? 

  1. A2 = 0.
  2. rank A = 1.  
  3. rank A = 0. 
  4. there exists u ∈ ℝ2, u ≠ 0 such that (u, u) = 0. 

Answer (Detailed Solution Below)

Option 4 : there exists u ∈ ℝ2, u ≠ 0 such that (u, u) = 0. 

Linear Algebra Question 1 Detailed Solution

Explanation:

(-, -) is a symmetric bilinear form on ℝ2 such that there exist nonzero v, w ∈ ℝ2 such that (v, v) > 0 > (w, w) and (v, w) = 0

Let f((x1, x2), (y1, y2)) = x1y1 - x2y2

Also, let v = (1, 0) and w = (0, 1)

Then f(v, v) = f((1, 0), (1, 0)) = 1 - 0 = 1 > 0

f(w, w) = f((0, 1), (0, 1)) = 0 - 1 = -1 < 0

f(v, w) = f((1, 0), (0, 1)) = 1 - 1 = 0

So, here A = \(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)

A2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\) = \(\begin{bmatrix}1&0\\0&1\end{bmatrix}\) ≠ 0

(1) is false

rank(A) = 2

(2), (3) are false

Let u = (1/2, 1/2) ≠ 0  then f((1/2, 1/2), (1/2, 1/2)) = 1/4 - 1/4 = 0

Hence there exists u ∈ ℝ2, u ≠ 0 such that (u, u) = 0. 

(4) is correct

Linear Algebra Question 2:

Consider the quadratic form Q(x, y, z) associated to the matrix

B = \(\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{array}\right]\)

Let

S = \(\left\{\left[\begin{array}{l} \rm a \\\rm b \\\rm c\end{array}\right] \in \rm ℝ^3 \mid Q(a, b, c)=0\right\}\).

Which of the following statements is FALSE?

  1. The intersection of S with the xy-plane is a line.
  2. The intersection of S with the xz-plane is an ellipse.
  3. S is the union of two planes.
  4. Q is a degenerate quadratic form.

Answer (Detailed Solution Below)

Option 2 : The intersection of S with the xz-plane is an ellipse.

Linear Algebra Question 2 Detailed Solution

Concept:

A quadratic form is degenerate if at least one eigenvalue is 0 

Explanation:

B = \(\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{array}\right]\) and S = \(\left\{\left[\begin{array}{l} \rm a \\\rm b \\\rm c\end{array}\right] \in \rm ℝ^3 \mid Q(a, b, c)=0\right\}\).

So quadratic form is Q(x, y, z) = x2 + y2 -2z2 + 2xy

Now, Q(a, b, c) = 0

 a2 + b2 -2c2 + 2ab = 0....(i)

(1): On xy-plane, z = 0 so c = 0

Therefore (i) implies

2 + b2 + 2ab = 0 ⇒ (a + b)2 = 0 ⇒ a + b = 0

i.e., x + y = 0, which is a line

So option (1) is TRUE

(2) On xz-plane, y = 0 so b = 0

Therefore (i) implies

a2 - 2c2 = 0 ⇒ x2 - 2z2 = 0 which is not an equation of ellipse

So option (2) is FALSE

(3): (i) ⇒  a2 + b2 -2c2 + 2ab = 0

  ⇒ (a + b)2 = 2c2

  ⇒ a + b = ± √2c

So S is the union of two planes.

Option (3) is TRUE

(4): B = \(\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{array}\right]\) 

eigenvalues of B are -2, 2, 0

So Q is a degenerate quadratic form.

Option (4) is TRUE

Linear Algebra Question 3:

Let \(V=\{A\in M_{3\times3}(\mathbb{R}:A^t+A\in \mathbb{R}\cdot I\}\) where I is the identity matrix. Consider the quadratic form defined as q(A) = Trace(A)2 - Trace(A2) · What is the signature of this quadratic form?

  1. (+ + + +)
  2. (+ 0 0 0)
  3. (+ - - -)
  4. (- - - 0)

Answer (Detailed Solution Below)

Option 1 : (+ + + +)

Linear Algebra Question 3 Detailed Solution

Concept:

1) let A = \(\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}\)

 then AT =  \(\begin{bmatrix}a&d&g\\b&e&h\\c&f&i\end{bmatrix}\)​​

Signature of a real quadratic form is express of positive terms over negative term in real quadratic form . 

let p = positive terms

     n = negative terms

then signature s = p - n

Calculation:

Let A = \(\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}\)

then AT =  \(\begin{bmatrix}a&d&g\\b&e&h\\c&f&i\end{bmatrix}\)

given A+AT = K.I

now 

A+AT = \(\begin{bmatrix}2a&b+d&c+g\\d+b&2e&f+h\\g+c&h+f&2i\end{bmatrix}\) . . . . . . . . . . 1

A+AT = K.I

A+AT = \(\begin{bmatrix}K&0&0\\0&K&0\\0&0&K\end{bmatrix}\) . . . . . . . . . . 2

now from equation 1 and 2 , we get 

2a = K, 2e = K and 2i = K

a = e = i = K/2

now put all the values in matrix A ,

A= \(\begin{bmatrix}K/2&b&c\\-b&K/2&f\\-c&-f&K/2\end{bmatrix}\)

Trace A = K/2 + K/2 + K/2

             = \(\frac33\)K

A2 = \(\begin{bmatrix}\frac{k^2}{4} -b^2 -c^2 &X&Y\\Z&\frac{k^2}{4 }-b^2 -f^2&P \\Q&R&-c^2 -f^2 +\frac{k^2}{4}\end{bmatrix}\)

Where 

X = product of first row and second column

Y = product of first row and third column

Z = product of second row and first column

P = product of second row and third column

Q = product of third row and first column

R = product of second row and second column

We don't need these terms so we used variables here .

We need only Trace of A.

Trace (A2) = \(\frac34\)K2 - 2b2 - 2c2 - 2f2 

given 

q(A) = Trace (A)2 - Trace (A2)

q(A) = (\(\frac32\)K)2 - \(\frac34\)K2 - 2b2 - 2c2 - 2f2 

q(A) = \(\frac32\) K2 + 2b2 + 2c2 + 2f2 

Matrix is 

\(\begin{bmatrix}3/2&0&0&0\\0&2&0&0\\0&0&2&0\\0&0&0&2\end{bmatrix}\)

All eigen values are positive 

signature = ( + , + , + , + )

correct option is 1

Linear Algebra Question 4:

Which of the following matrix is not diagonalizable?

  1. \(\left[\begin{array}{cc}\pi & \pi \\ 0 & \frac{22}{3}\end{array}\right]\)
  2. \(\left[\begin{array}{cc}e & 0 \\ e^\pi & \pi\end{array}\right]\)
  3. \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\)
  4. \(\left[\begin{array}{cc}e^\pi & 0 \\ \pi e & \pi^{e}\end{array}\right] \)

Answer (Detailed Solution Below)

Option 3 : \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\)

Linear Algebra Question 4 Detailed Solution

Solution - We need to check the given matrix not diagonalizable or not 

When all eigen values are distinct then Algebraic Multiplicity is equal to  Geometric Multiplicity which is 1 for option 1) , option 2) and option 4) 

these matrix are upper triangular and lower triangular and the diagonal entries are its eigen values 

So, Option 1) , Option 2) and Option 4) are diagonalizable as eigenvalues are distinct

Now for 

Option 3) \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\) 

Here its eigen value be 1,1 and Algebraic Multiplicity be 2 

and Geometric Multiplicity be 1 

So \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\) is not diagonalizable.

Therefore, Correct Option is Option 3) 

Alternate Method Every matrix which have distinct eigenvalues are diagonalizable and main diagonal elements are the eigenvalues of upper and lower triangular matrix.

For options (1), (2), (4), each matrix has distinct eigenvalues. So they are diagonalizable.

Hence matrix from option (3) is not diagonalizable

Linear Algebra Question 5:

Let us define a matrix A ∈ Mn(\(\mathbb{R}\)) to be positive if for every column vector v ∈ \(\mathbb{R}\)n we have 〈Av, v〉 ≥ 0, where 〈.,.〉 is the standard inner product on \(\mathbb{R}\)n.
Let \(A_{α, β}=\left(\begin{array}{ccc}α & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & β\end{array}\right)\). Let S = {(α, β) ∈ \(\mathbb{R}\)∶  Aα, β is positive}. Which of the following statements is true?

  1. S is empty
  2. (α, β) ∈ S if and only if αβ > 0
  3. (α, β) ∈ S if and only if α + β + 4 > 0
  4. S = \(\mathbb{R}\)2

Answer (Detailed Solution Below)

Option 1 : S is empty

Linear Algebra Question 5 Detailed Solution

Concept:

A matrix M is positive if v, v ≥ 0, ∀ v ∈ ℝn

Explanation:

α, β v, v > = \(\left\langle\left[\begin{array}{lll} α & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & β \end{array}\right]\left[\begin{array}{l} v_1 \\ v_2 \\ v_3 \end{array}\right],\left[\begin{array}{l} v_1 \\ v_2 \\ v_3 \end{array}\right]\right\rangle\)

for \(\begin{bmatrix} v_1 \\\ v_2 \\\ v_3 \end{bmatrix} ∈\) ℝ3

\(=\left\langle\left[\begin{array}{c} α v_1+v_2+v_3 \\ v_1 \\ v_1+β v_3 \end{array}\right],\left[\begin{array}{l} v_1 \\ v_2 \\ v_3 \end{array}\right]\right\rangle=\left[\begin{array}{ll} v_1 v_2 v_3 \end{array}\right]\left[\begin{array}{c} α v_1+v_2+v_3 \\ v_1 \\ v_1+β v_3 \end{array}\right]\)

= α\(v_1^2\) + v1v2 + v1v3 + v1v2 + v1v3 + β\(v_3^2\)

Take \(v = \begin{pmatrix} 1 \\\ 0 \\\ 0 \end{pmatrix}\) then α, β v, v > = α

Take α = - 1 and β = - 1 ⇒ α, β v, v > less than 0

So αβ > 0 but A is not positive

Option (2) is false.

α + β + 4 = 2 > 0 but A is not positive.

Option (3) is false.

(α, β) = (-1, -1) ∈ ℝ2 but A is not positive.

Option (4) is false.

hence option (1) is true.

Linear Algebra Question 6:

Which of the following is an inner product on the vector space of all real-valued continuous functions on [0, 1]?

  1. 〈f, g〉 = |\(\int_0^1\) f(t) g(t) dt|
  2. 〈f, g〉 = \(\int_0^1\) |f(t) g(t)| dt
  3. 〈f, g〉 = f(0) g(0) + f(1) g(1)
  4. 〈f, g〉 = \(\int_0^1\) f(t) g(t) dt

Answer (Detailed Solution Below)

Option 4 : 〈f, g〉 = \(\int_0^1\) f(t) g(t) dt

Linear Algebra Question 6 Detailed Solution

Concept:

An inner product on V is a function satisfying the following conditions

(i) 1 + x2, y> = 1, y> + <x2, y>

(ii) = c

(iii) <β, α> = \(<\overline{α, \beta}>\)

(iv) <α, α> = 0 if and only if α = 0 and <α, α> ≥ 0 for all α

Explanation:

Option (1): for c = - 1

〈cf, g〉 = 〈- f, g〉 = |\(\int_0^1\) - f(t) g(t) dt| = |\(\int_0^1\) f(t) g(t) dt|

and c〈f, g〉 = - 〈f, g〉 = - |\(\int_0^1\) f(t) g(t) dt|

Hence 〈cf, g〉 ≠ c〈f, g〉 

〈f, g〉 = |\(\int_0^1\) f(t) g(t) dt| is not inner product space.

Option (1) is false.

Option (2): 

for c = - 1

〈cf, g〉 = 〈- f, g〉 = \(\int_0^1\) -| f(t) g(t)| dt = \(\int_0^1\) |f(t) g(t)| dt

and c〈f, g〉 = - 〈f, g〉 = - \(\int_0^1\) |f(t) g(t)| dt

Hence 〈cf, g〉 ≠ c〈f, g〉 

〈f, g〉 = \(\int_0^1\) |f(t) g(t)| dt is not inner product space.

Option (2) is false

option (3): Let f(x) = x(x - 1)

then = f(0) f(0) + f(1)f(1)

= 0 + 0 = 0

but f(x) ≠ 0

so, = f(0) g(0) + f(1)g(1) is not inner product

Option (3) is false

option (4): \(\int_0^1 f(t) g(t) dt\)

then

(1) 1 + f2, g> = \(\int_0^1 (f_1(t) + f_2(t)g(t)dt\)

\(= \int_0^1 (f_1(t) g(t)dt + \int_0^1 (f_2(t) g(t)dt\)

= 1, g> + 2, g>

(ii) \(\int_0^1 cf(t) g(t)dt \) = \(c\int_0^1 f(t) g(t)dt \) = c

(iii) \(​​\int_0^1 g(t) f(t) dt \) = \(​​\int_0^1 f(t) g(t) dt \) =

(iv) \(​​\int_0^1 f(t) g(t) dt \) = \(​​\int_0^1 (f(t)) ^2dt \) ≥ 0 for all f

and \(​​\int_0^1 (f(t)) ^2dt \) = 0 ⇔ f = 0

and \(​​\int_0^1 (f(t)) ^2dt \) > 0 if f ≠ 0

So, \(​​\int_0^1 f(t) g(t) dt \) satisfy all the properties

is an inner product

Option (4) is true.

Linear Algebra Question 7:

Let S = {u1, ..., uk} be a subset of non-zero vectors from \(\mathbb{R}\)n. Now, consider the two statements given below:

I: If S is linearly dependent set in \(\mathbb{R}\)n then uk is a linear combination of u1, ..., uk-1.

II: If S is linearly independent set in \(\mathbb{R}\)n then k < n.

Which of the following statements is true?

  1. Statement I is FALSE and Statement II is TRUE
  2. Statement I is TRUE and Statement II is FALSE
  3. Both Statement I and Statement II are FALSE
  4. Both Statement I and Statement II are TRUE

Answer (Detailed Solution Below)

Option 3 : Both Statement I and Statement II are FALSE

Linear Algebra Question 7 Detailed Solution

Explanation:

(I) Let S = {(0, 1, 0), (0, 2, 0), (1, 0, 0)}, k = 3, n = 3

For linearly dependent,

C1(0, 1, 0) + C2 (0, 2, 0) + C3 (1, 0, 0) = (0, 0, 0)

⇒ C3 = 0, C1 + 2C2 = 0 ⇒ C1 = -2C2

Here C1 = -2C2, C3 = 0 ⇒ not all Ci's are zero.

⇒ S is linearly dependent.

but here u3 can not be expressed as a linear combination of u1 & u2

Statement (I) false

(II) Take, k = 3, n = 3 and S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Then S is Linearly independent.

but k \(\nless\) n

⇒ Statement (II) is false.

So, option (3) correct

Linear Algebra Question 8:

Let A = (ai, j) be the n × n real matrix with ai, j = ij for all 1 ≤ i, j ≤ n. If n ≥ 3, which one of the following is an eigenvalue of A?  

  1. 1
  2. n
  3. n(n + 1)/2 
  4. n(n + 1)(2n + 1)/6 

Answer (Detailed Solution Below)

Option 4 : n(n + 1)(2n + 1)/6 

Linear Algebra Question 8 Detailed Solution

Concept:

(i) Rank of a matrix is equal to the number of non-zero eigenvalues of that matrix.

(ii) Sum of eigenvalues of a matrix A = trace of A

Explanation:

A = (ai, j) be the n × n real matrix with ai, j = ij for all 1 ≤ i, j ≤ n. 

So, A = \(\begin{bmatrix}a_{1,1}&a_{1,2}&a_{1,3}&...&a_{1,n}\\a_{2,1}&a_{2,2}&a_{2,3}&...&a_{2, n}\\.&.&.&...&.\\a_{n,1}&a_{n,2}&a_{n,3}&...&a_{n, n}\end{bmatrix}\)

       = \(\begin{bmatrix}1×1&1×2&1×3&...&1× n\\2×1&2×2&2×3&...&2× n\\.&.&.&...&.\\n×1&n×2&n×3&...&n× n\end{bmatrix}\)

     = \(\begin{bmatrix}1&2&3&...&n\\2&4&6&...&2n\\.&.&.&...&.\\n&2n&3n&...&n^2\end{bmatrix}\)

Using the operations \(R_2\to R_2-2R_1\), ..., \(R_2\to R_2-nR_1\) we get

A ∼ \(\begin{bmatrix}1&2&3&...&n\\0&0&0&...&0\\.&.&.&...&.\\0&0&0&...&0\end{bmatrix}\) 

So Rank(A) = 1

We know that rank of a matrix is equal to the number of non-zero eigenvalues of that matrix.

So, A has only one non-zero eigenvalues.

Since A is n × n matrix so n-1 eigenvalues of A is 0 i.e., 0, 0, ..., (n-1 times)

Now, trace of A = 1 × 1 + 2 × 2 + 3 × 3 + ... + n × n = 12 + 22 + 32 + ...+ n2 = n(n + 1)(2n + 1)/6 

Also, sum of eigenvalues of A = trace of A

Let the unknown eigenvalue be λ 

Then 0 + 0 + ... + 0 + λ = n(n + 1)(2n + 1)/6 ⇒ λ = n(n + 1)(2n + 1)/6 

Hence an eigenvalue of A is n(n + 1)(2n + 1)/6

(4) is correct

Linear Algebra Question 9:

Suppose A and B are similar real matrices, that is, there exists an invertible matrix S such that A = SBS-1. Which of the following need not be true?

  1. Transpose of A is similar to the transpose of B.
  2. The minimal polynomial of A is same as the minimal polynomial of B. 
  3. trace(A) = trace(B).
  4. The range of A is same as the range of B. 

Answer (Detailed Solution Below)

Option 4 : The range of A is same as the range of B. 

Linear Algebra Question 9 Detailed Solution

Explanation:

Two matrices A and B are similar if there exists an invertible matrix S such that A = SBS-1 

The properties of similar matrices are

 If A and B are similar then

(i) AT and BT are similar.

(ii) the characteristic polynomials of A and B are the same.

(iii) the minimal polynomials of A and B are same

(iv) Trace(A) = trace(B), det(A) = det(B)

(v) eigenvalues of A and B are same

Hence from the above properties, (1), (2), (3) are true

(4): Let A = \(\begin{bmatrix}0&0\\1&0\end{bmatrix}\) and B = \(\begin{bmatrix}0&1\\0&0\end{bmatrix}\)

Here A and B are similar matrix

but range of A = \(\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\}\) and range of B = \(\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\}\)

So, (4) is not true

Linear Algebra Question 10:

Let V be the subspaces of ℝ4 spanned real by α= (1, 2, 3, 4), α= (2, 3, 4, 5), α= (3, 4, 5, 6), α= (4, 5, 6, 7) then dim(V) is: 

  1. 3
  2. 4
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Linear Algebra Question 10 Detailed Solution

Given -

Let V be the subspaces of ℝ4 spanned real by α= (1, 2, 3, 4), α= (2, 3, 4, 5), α= (3, 4, 5, 6), α= (4, 5, 6, 7)

Explanation -

Let  α5 =  α2 -  α1 = (1, 1, 1, 1)

Now α= (4, 5, 6, 7) = α3 + α5 

and  α= (3, 4, 5, 6) = α2 + α5 

and  α= (2, 3, 4, 5) = α1 + α5 

Now all vectors depend on the first two vectors, hence the dimension of V is 2 only. 

Hence option (iv) is correct.

Get Free Access Now
Hot Links: teen patti 500 bonus teen patti vip teen patti star login teen patti real money app teen patti go