Trigonometric Function MCQ Quiz in मराठी - Objective Question with Answer for Trigonometric Function - मोफत PDF डाउनलोड करा

Last updated on Apr 4, 2025

पाईये Trigonometric Function उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Trigonometric Function एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Trigonometric Function MCQ Objective Questions

Top Trigonometric Function MCQ Objective Questions

Trigonometric Function Question 1:

If \(\rm y = \tan^{-1} \left( \frac{\sin x}{1 + \cos x} \right) \) then \(\rm \frac{dy}{dx}\) is equal to

  1. 1/4
  2. 1/2
  3. 1 + cos2x
  4. -1/4

Answer (Detailed Solution Below)

Option 2 : 1/2

Trigonometric Function Question 1 Detailed Solution

Concept:

Formulae

  • sinθ = 2 sin\(\frac{\theta}{2}\) cos\(\frac{\theta}{2}\)
  • 1 + cosθ = 2 cos2\(\frac{\theta}{2}\)

Calculation:

The given equation is y = tan−1\(\big (\frac{sin\ x}{1+cos\ x}\big) \)

⇒ y = tan−1\(\big (\frac{sin \ (\frac{2x}{2})}{2cos^2\ \frac{x}{2}}\big) \)

⇒ y = tan−1\(\big (\frac{2\ sin \ (\frac{x}{2})\ cos \ (\frac{x}{2})}{2\ cos^2\ \frac{x}{2}}\big) \)

⇒ y = tan−1\(\big (\frac{\ sin \ (\frac{x}{2})}{\ cos\ \frac{x}{2}}\big) \)

⇒ y = tan−1tan(\(\frac{x}{2}\))

⇒ y = \(\frac{x}{2}\)

Differentiate with respect to x on both sides we get

⇒ \(\frac{dy}{dx}=\frac{1}{2}\)

∴ \(\frac{dy}{dx}=\frac{1}{2}\)

Trigonometric Function Question 2:

Differentiate f(x) = cos(tan 3x) + sin(tan 3x).

  1. cos(tan 3x) + sin(tan 3x)
  2. sec2 3x(cos(tan 3x) + sin(tan3x))
  3. 3sec2 3x(cos(tan 3x) - sin(tan 3x))
  4. cos(tan 3x) - sin(tan 3x)

Answer (Detailed Solution Below)

Option 3 : 3sec2 3x(cos(tan 3x) - sin(tan 3x))

Trigonometric Function Question 2 Detailed Solution

Explanation:

f(x) = cos(tan 3x) + sin(tan 3x)

Differentiate f(x) is

\(\frac{d}{dx}f(x)=\frac{d}{dx}[(cos(tan3x)+sin(tan3x))]\)

\(=\frac{d}{dx}(cos(tan3x))+\frac{d}{dx}(sin(tan3x))\)

\(=-sin(tan3x)\frac{d}{dx}(tan3x)+cos(tan3x)\frac{d}{dx}(tan3x)\)

= -3sin(tan 3x).sec2 3x + 3cos(tan 3x).sec2 3x

= 3sec2 3x(cos(tan 3x) - sin(tan 3x))

Trigonometric Function Question 3:

If y = sec(tan-1x), then \(\frac{{dy}}{{dx}}\) at x = 1 is

  1. \(\frac{1}{2}\)
  2. 1
  3. \(\sqrt 2 \)
  4. \(\frac{1}{{\sqrt 2 }}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{1}{{\sqrt 2 }}\)

Trigonometric Function Question 3 Detailed Solution

Concept:

  • Chain Rule: If y = f(g(x)), then \(\frac{{dy}}{{dx}}\)= f '(g(x))g'(x)
  • \(1+ \tan^2 x= \sec^2 x\)
  • tan(tan-1x) = x

Calculation:

If y = sec(tan-1x)

⇒ \(y = \sqrt{1 + \tan^2(\tan^{-1}x)}\) 

⇒ \(y = \sqrt{1 +x^2}\) 

⇒ \(\frac{{dy}}{{dx}} ={1 \over 2 \sqrt{1 + x^2}} (1+x^2)'\)

⇒ \(\frac{{dy}}{{dx}} ={2x \over 2 \sqrt{1 + x^2}} \)

⇒ \(\frac{{dy}}{{dx}} ={x \over \sqrt{1 + x^2}} \)

At x = 1, \(\frac{{dy}}{{dx}}\)\(\frac{1}{{\sqrt 2 }}\)

∴ The correct answer is option (4).

Trigonometric Function Question 4:

Find derivative of \(e^{sin^{-1} x}\) with respect to x ?

  1. \(\frac{e^{sin^{-1} x}}{{1 + x^2}}\)
  2. \(\frac{e^{sin^{-1} x}}{\sqrt {1 + x^2}}\)
  3. \(\frac{e^{sin^{-1} x}}{{1 - x^2}}\)
  4. \(\frac{e^{sin^{-1} x}}{\sqrt {1 - x^2}}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{e^{sin^{-1} x}}{\sqrt {1 - x^2}}\)

Trigonometric Function Question 4 Detailed Solution

CONCEPT:

  • \(\frac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \frac{1}{{\sqrt {1 - {x^2}} }}\)
  • \(\frac{{d\left( {{e^x}} \right)}}{{dx}} = {e^x}\)

CALCULATION:

Let \(y = e^{sin^{-1} x}\)

Here, we have to find \(\frac{dy}{dx}\)

So, differentiating both the sides of \(y = e^{sin^{-1} x}\) with respect to x we get,

⇒ \(\frac{dy}{dx} = \frac{d(e^{sin^{-1} x})}{dx}\)

⇒ \(\frac{dy}{dx} = e^{sin^{-1} x} \ \cdot \frac{d(sin^{-1} x)}{dx}\)

As we know that, \(\frac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \frac{1}{{\sqrt {1 - {x^2}} }}\)

⇒ \(\frac{dy}{dx} = \frac{e^{sin^{-1} x}}{\sqrt {1 - x^2}}\)

Hence, correct option is 4.

Trigonometric Function Question 5:

If \(\rm y = sin^{-1} \frac{\sqrt{ (1 + x)} + \sqrt {(1 - x)}}{2}\) then \(\rm \frac{dy}{dx}\) is equal to

  1. \(\rm \frac{1}{\sqrt{ (1 - x^2)}}\)
  2. \(- \rm \frac{1}{\sqrt{ (1 - x^2)}}\)
  3. \(- \rm \frac{1}{2\sqrt{ (1 - x^2)}}\)
  4. None of these

Answer (Detailed Solution Below)

Option 3 : \(- \rm \frac{1}{2\sqrt{ (1 - x^2)}}\)

Trigonometric Function Question 5 Detailed Solution

Concept:

Formulae

  • 1 + cos2θ = 2cos²θ
  • 1 - cos2θ = 2sin²θ
  • Sin(A+B) = sin A cos B + cos A sin B
  • cos-1x = \(\frac{-1}{\sqrt {1-x^2}}\)

Calculation:

The given equation is \(\rm y = sin^{-1} \frac{\sqrt{ (1 + x)} + \sqrt {(1 - x)}}{2}\)

Putting x = cos2θ, θ = \(\frac{1}{2}\) cos-1x

⇒ \(\rm y = sin^{-1} \frac{\sqrt{ (1 + cos2θ)} + \sqrt {(1 - cos2θ)}}{2}\)

⇒ \(\rm y = sin^{-1} \frac{\sqrt{ 2cos^2θ} + \sqrt {2sin^2θ}}{2}\)

⇒ \(\rm y = sin^{-1} \frac{\sqrt{2}cosθ + \sqrt {2}sinθ}{2}\)

⇒ \(\rm y = sin^{-1}\big(\frac{1}{\sqrt{2}}cosθ + \frac{1}{\sqrt {2}}sinθ\big)\)

⇒ \(\rm y = sin^{-1}\big(sin\frac{π}{4}cosθ + cos\frac{π}{4}sinθ\big)\)

⇒ \(\rm y = sin^{-1}sin\big(\frac{π}{4}+θ\big)\)

⇒ \(\rm y = \big(\frac{π}{4}+θ\big)\)

⇒ y = \(\frac{\pi}{4}\)\(\frac{1}{2}\) cos-1x

Differentiating the above equation w.r.t x,

\(\rm \frac{dy}{dx}\) = \(\frac{1}{2} \frac{-1}{\sqrt {1-x^2}}\)

∴ \(\rm \frac{dy}{dx}\) = \(-\frac{1}{2\sqrt {1-x^2}}\)

Trigonometric Function Question 6:

If y = cos (sin2 x), then find the value of \(\rm\frac{dy}{dx}\) at x = \(\rm\frac{\pi}{2}\).

  1. 0
  2. 1
  3. \(\rm\frac{1}{2}\)
  4. \(\rm\frac{1}{3}\)

Answer (Detailed Solution Below)

Option 1 : 0

Trigonometric Function Question 6 Detailed Solution

Concept:

Derivatives of Trigonometric Functions:

\(\rm \frac{d}{dx}\sin x=\cos x\ \ \ \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\cos x=-\sin x\\ \frac{d}{dx}\tan x=\sec^2x\ \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\cot x=-\csc^2 x\\ \frac{d}{dx}\sec x=\tan x\sec x\ \ \ \ \frac{d}{dx}\csc x=-\cot x\csc x\)

Chain Rule of Derivatives:

  • \(\rm \frac{d}{dx}f(g(x))=\frac{d}{d\ g(x)}f(g(x))× \frac{d}{dx}g(x)\).
  • \(\rm \frac{dy}{dx}=\frac{dy}{du}× \frac{du}{dx}\).


Calculation:

We have y = cos (sin2 x).

Differentiating w.r.t. x, we get:

\(\rm\frac{dy}{dx}\) = - [sin (sin2 x)] × (2 sin x) (cos x)

At x = \(\rm\frac{\pi}{2}\), we get:

\(\rm\frac{dy}{dx}\) = - [sin (sin2 \(\rm\frac{\pi}{2}\))] × (2 sin \(\rm\frac{\pi}{2}\)) (cos \(\rm\frac{\pi}{2}\)) = - [sin (1)] × (2 × 1) (0) = 0.

Trigonometric Function Question 7:

Find \(\frac{dy}{dx}\) if 2x + 3y = sin y ?

  1. \(\frac{3}{cos \ y - 2}\)
  2. \(\frac{2}{cos \ y - 3}\)
  3. \(\frac{2}{sin \ y - 3}\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\frac{2}{cos \ y - 3}\)

Trigonometric Function Question 7 Detailed Solution

CONCEPT:

  • \(\frac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\)

CALCULATION:

Given: 2x + 3y = sin y

Here, we have to find \(\frac{dy}{dx}\)

So, let's differentiate the given equation with respect to x

⇒ \(\frac{d(2x + 3y)}{dx} = \frac{d(sin y)}{dx}\)

As we know that, \(\frac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\)

⇒ \(2 + 3 \frac{dy}{dx} = cos y \frac{dy}{dx}\)

⇒ \(\frac{dy}{dx} = \frac{2}{cos \ y - 3}\)

Hence, correct option is 2.

Trigonometric Function Question 8:

What is the derivative of sin(ln x) + cos(ln x) with respect to x at x = e?

  1. \(\dfrac{cos 1-sin1}{e}\)
  2. \(\dfrac{sin1-cos1}{e}\)
  3. \(\dfrac{cos1+sin1}{e}\)
  4. 1

Answer (Detailed Solution Below)

Option 1 : \(\dfrac{cos 1-sin1}{e}\)

Trigonometric Function Question 8 Detailed Solution

CONCEPT:

  • \(\frac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\)
  • \(\frac{{d\left( {\cos x} \right)}}{{dx}} = \; - \sin x\)
  • \(\frac{{d\left( {\ln x} \right)}}{{dx}} = \frac{1}{x}\)

CALCULATION:

Let f(x) = sin(ln x) + cos(ln x)

As we know that, \(\frac{{d\left( {\sin x} \right)}}{{dx}} = \cos x, \frac{{d\left( {\cos x} \right)}}{{dx}} = \; - \sin x \ and \ \frac{{d\left( {\ln x} \right)}}{{dx}} = \frac{1}{x}\)

⇒ \(f'\left( x \right) = \frac{{\cos \left( {\ln x} \right)}}{x} - \frac{{\sin \left( {\ln x} \right)}}{x}\)

⇒ \(f'\left( e \right) = \frac{{\cos \left( {\ln e} \right)}}{e} - \frac{{\sin \left( {\ln e} \right)}}{e}\)

As we know that, ln(e) = 1

⇒ \(f'(e) = \frac{cos1 - sin1}{e}\)

Hence, option 1 is correct.

Trigonometric Function Question 9:

Find derivative of \(\rm \sqrt{\tan x}\) with respect to x

  1. sec2 x tanx
  2. \(\frac{\sec^2 x}{\sqrt{\tan x}}\)
  3. \(\frac{\sec^2 x}{2\sqrt{\tan x}}\)
  4. 2\(\rm \sqrt{\tan x}\) sec2 x

Answer (Detailed Solution Below)

Option 3 : \(\frac{\sec^2 x}{2\sqrt{\tan x}}\)

Trigonometric Function Question 9 Detailed Solution

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)} \right] = {\rm{\;f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{g'}}\left( {\rm{x}} \right)\)
  • Product Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right)} \right] = {\rm{\;f'}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right) + {\rm{f}}\left( {\rm{x}} \right){\rm{\;g'}}\left( {\rm{x}} \right)\)

 

Formula:

\(\rm \frac{d\tan x}{dx} = \sec^2 x\)

 

Calculation:

Let y = \(\rm \sqrt{\tan x}\)

Differentiating with respect to x, we get

\(\rm \Rightarrow \frac{dy}{dx} = \frac{d\sqrt{\tan x}}{dx}\\=\frac{d\sqrt{\tan x}}{d \tan x} \times \frac{d\tan x}{dx}\\=\frac{1}{2\sqrt{\tan x}} \times \sec^2 x \\\therefore \frac{dy}{dx} =\frac{\sec^2 x}{2\sqrt{\tan x}}\)

Trigonometric Function Question 10:

If \(y(\alpha)=\sqrt{2\left(\frac{\tan \alpha+\cot \alpha}{1+\tan ^2 \alpha}\right)+\frac{1}{\sin ^2 \alpha}}\) where \(\alpha \in\left(\frac{3 \pi}{4}, \pi\right)\), then \(\frac{d y}{d \alpha}\ \rm at\ \alpha=\frac{5 \pi}{6}\) is

  1. \(-\frac{1}{4}\)
  2. \(\frac{4}{3}\)
  3. 4
  4. -4

Answer (Detailed Solution Below)

Option 3 : 4

Trigonometric Function Question 10 Detailed Solution

Explanation -

\(y(\alpha)= \sqrt{2\left(\frac{\tan \alpha+\cot \alpha}{1+\tan ^2 \alpha}\right)+\frac{1}{\sin ^2 \alpha}}\)

\(y(\alpha)=\sqrt{2 \frac{1}{\sin \alpha \cos \alpha \times \frac{1}{\cos ^2 \alpha}}+\frac{1}{\sin ^2 \alpha}}\)

\(y(\alpha)=\sqrt{2 \cot \alpha+\operatorname{cosec}^2 \alpha}\)

\(y(\alpha)=\sqrt{ (1+\cot \alpha)^2}\)

y(α) = -1 – cotα

dy/dα = 0 + cosec2α

dy/dα = cosec2 5π/6

dy/dα = 4

Hence Option (3) is correct.

Get Free Access Now
Hot Links: teen patti chart teen patti wala game teen patti yas teen patti master gold yono teen patti