Numerical Analysis MCQ Quiz in मराठी - Objective Question with Answer for Numerical Analysis - मोफत PDF डाउनलोड करा

Last updated on Mar 16, 2025

पाईये Numerical Analysis उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Numerical Analysis एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Numerical Analysis MCQ Objective Questions

Top Numerical Analysis MCQ Objective Questions

Numerical Analysis Question 1:

In the table below, the values of y are consecutive terms of a series of which 52.8 is the 8th term

x 3 4 5 6 7 8 9
y 4.8 8.4 14.5 23.6 36.2 52.8 73.9

Then the first term is 

  1. 2.9
  2. 4.8
  3. 3.1
  4. 4.2

Answer (Detailed Solution Below)

Option 3 : 3.1

Numerical Analysis Question 1 Detailed Solution

Concept:

Newton's Forward Difference formula:

y(x) = y0 + pΔy0 \(\frac{p(p-1)}{2!}\) Δ2y\(\frac{p(p-1)(p-2)}{3!}\)Δ3y0 + ....

where p = \(\frac{x-x_0}{h}\) and h is the step length

Explanation:

From the given data we can write the difference table as

x y Δy  Δ2y Δ3y Δ4y
3 4.8        
    3.6      
4 8.4   2.5    
    6.1   0.5  
5 14.5   3.0   0
    9.1   0.5  
6 23.6   3.5   0
    12.6   0.5  
7 36.2   4.0   0
    16.6   0.5  
8 52.8   4.5    
    21.1      
9 73.9        

 

Here x0 = 3, x = 1, h = 4 - 3 = 1 and so p = (1 - 3)/1 = - 2

Then using Newton's Forward Difference formula,

y(1) = 4.8+ (-2) × 3 \(\frac{(-2)(-3)}{2!}\) × 2.5 \(\frac{(-2)(-3)(-4)}{3!}\)× 0.5 = 3.1

(3) is correct

Numerical Analysis Question 2:

The sufficient condition for the convergence of Newton-Raphson iteration scheme is

  1.  |f(x).f'(x)| < |f’'(x)|2
  2.  |f(x).f’’(x)| > |f’(x)|2
  3.  |f(x).f’’(x)| < |f’(x)|2
  4.  |f(x).f'(x)| > |f’'(x)|2

Answer (Detailed Solution Below)

Option 3 :  |f(x).f’’(x)| < |f’(x)|2

Numerical Analysis Question 2 Detailed Solution

Explanation:

Newton Raphson's method: Let x0 be the initial guess of f(x) then the nth iteration to finding the root of f(x) is is given by

\(x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}\)

The order of convergence of Newton Raphson method is 2 or the convergence is quadratic.

It converges if |f(x).f’’(x)| < |f’(x)|2. Also, this method fails if f’(x) = 0.

(3) is correct

Numerical Analysis Question 3:

The magnitude of the truncation error for the scheme f'(x) = Af(x) + Bf(x + h)  +Cf(x + 2h) is equal to   

  1. h2f'''(ξ) if A = -\(\frac5{6h}\), B = \(\frac3{2h}\), C = -\(\frac2{3h}\)
  2. h2f'''(ξ) if A = \(\frac5{6h}\), B = \(\frac3{2h}\), C = \(\frac2{3h}\)
  3. h2f''(x) if A = -\(\frac5{6h}\), B = \(\frac3{2h}\), C = -\(\frac2{3h}\)
  4. h2f''(x) if A = \(\frac5{6h}\), B = \(\frac3{2h}\), C = \(\frac2{3h}\)

Answer (Detailed Solution Below)

Option 3 : h2f''(x) if A = -\(\frac5{6h}\), B = \(\frac3{2h}\), C = -\(\frac2{3h}\)

Numerical Analysis Question 3 Detailed Solution

Concept:

Taylor series expansion of f(x + h) is

f(x + h) = f(x) + h f'(x) + \(\frac{h^2}{2!}\)f''(x) + \(\frac{h^3}{3!}\)f'''(x) + ... 

Explanation:

f'(x) = Af(x) + Bf(x + h)  +Cf(x + 2h)

f'(x) = Af(x) + B{f(x) + h f'(x) + \(\frac{h^2}{2!}\)f''(x) + \(\frac{h^3}{3!}\)f'''(x) + ...} + C{f(x) + 2h f'(x) + \(\frac{(2h)^2}{2!}\)f''(x) + \(\frac{(2h)^3}{3!}\)f'''(x) + ...} 

f'(x) = (A + B + C)f(x) + (Bh + 2Ch)f'(x) + (\(\frac{Bh^2}{2}+\frac{4Ch^2}{2}\))f''(x) + (\(\frac{Bh^3}{6}\) + \(\frac{8Ch^3}{6}\))f'''(x) + .....

In this expression, we can see that h2 is associated with f''(x)

So options (1) and (2) are false.

Now, the magnitude of the truncation error will be of the form f''(x) if

A + B + C = 0, Bh + 2Ch = 1

(3): A = -\(\frac5{6h}\), B = \(\frac3{2h}\), C = -\(\frac2{3h}\) 

A + B + C = \(\frac{-5+9-4}{6h}\) = 0

Bh + 2Ch = \(\frac32\) - \(\frac43\)  = 1/6 ≠ 1

Option (3) is false

(4):  A = \(\frac5{6h}\), B = \(\frac3{2h}\), C = \(\frac2{3h}\)

A + B + C = \(\frac{5+9+4}{6h}\) ≠ 0

Option (4) is false

All options are wrong here

Numerical Analysis Question 4:

Let y(t) satisfy the differential equation y' = λy; y(0) = 1. Then the backward Euler method, for n ≥ 1 & h > 0 \(\frac{y_n-y_{n-1}}{h}=\lambda y_n ; y_0=1\) yields

  1. a first order approximation to eλnh.
  2. a polynomial approximation to eλnh.
  3. a rational function approximation to eλnh.
  4. a Chebyshev polynomial approximation to eλnh.

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 4 Detailed Solution

Explanation:

 y' = λy; y(0) = 1

xnx0 + nh = 0 +nh = nh

y' = λy

\(\frac{dy}{y}\) = λdx 

Integrating

y = c1eλx 

so yn approaches to eλxn 

 yn approaches to eλnh 

(1), (3) correct

Numerical Analysis Question 5:

The values of α, A, B, C for which the quadrature formula \(\int^1_{-1}(1 - x)f(x)dx = Af(-α) + Bf(0) + Cf(α)\) is exact for polynomials of highest possible degree, are

  1. \(\alpha=\sqrt{\frac{3}{5}},A =\frac{5}{9}+\frac{\sqrt5}{3\sqrt3}, B=\frac{8}{9},C =\frac{5}{9}-\frac{\sqrt5}{3\sqrt3}\)
  2. \(\alpha=\sqrt{\frac{3}{5}},A =\frac{5}{9}-\frac{\sqrt5}{3\sqrt3}, B=\frac{8}{9},C =\frac{5}{9}+\frac{\sqrt5}{3\sqrt3}\)
  3. \(\alpha=\sqrt{\frac{3}{5}},A =\frac{5}{9}\left(1-\frac{\sqrt3}{\sqrt5}\right), B=\frac{8}{9},C =\frac{5}{9}\left(1+\frac{\sqrt3}{\sqrt5}\right)\)
  4. \(\alpha=\sqrt{\frac{3}{5}},A =\frac{5}{9}\left(1+\frac{\sqrt3}{\sqrt5}\right), B=\frac{8}{9},C =\frac{5}{9}\left(1-\frac{\sqrt3}{\sqrt5}\right)\)

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 5 Detailed Solution

Explanation:

\(\int^1_{-1}(1 - x)f(x)dx = Af(-α) + Bf(0) + Cf(α)\)

for f(x) = 1 we get

\(\int^1_{-1}(1 - x)dx = A + B + C\\ [x-\frac{x^2}{2}]_{-1}^1=A+B+C\)

A + B + C = 2...(i)

for f(x) = x we get

\(\int^1_{-1}(x - \frac{x^2}{2})dx = -α A + 0 + Cα\\ [\frac{x^2}{2}-\frac{x^3}{6}]_{-1}^1=(-A+C)α\)

(A-C)α = \(\frac23\)....(ii)

Option (1): 

A + B + C = \(\frac{5}{9}+\frac{\sqrt5}{3\sqrt3}+\frac{8}{9}+\frac{5}{9}-\frac{\sqrt5}{3\sqrt3}\) = 2

and (A-C)α \((\frac{5}{9}+\frac{\sqrt5}{3\sqrt3}-\frac{5}{9}+\frac{\sqrt5}{3\sqrt3})\sqrt{\frac{3}{5}}=\frac23\)

Hence it satisfies both equations (i) and (ii).

Option (1) is correct.

Option (2): 

A + B + C = \(\frac{5}{9}-\frac{\sqrt5}{3\sqrt3}+\frac{8}{9}+\frac{5}{9}+\frac{\sqrt5}{3\sqrt3}\) = 2

and (A-C)α = \((\frac{5}{9}-\frac{\sqrt5}{3\sqrt3}-\frac{5}{9}-\frac{\sqrt5}{3\sqrt3})\sqrt{\frac{3}{5}}=-\frac23\)

It is not satisfying  (ii).

Option (2) is not correct.

Option (3): 

A + B + C = \(\frac{5}{9}\left(1-\frac{\sqrt3}{\sqrt5}\right)+\frac{8}{9}+\frac{5}{9}\left(1+\frac{\sqrt3}{\sqrt5}\right)\) = 2

and (A-C)α = \(\left(\frac{5}{9}\left(1-\frac{\sqrt3}{\sqrt5}\right)-\frac{5}{9}\left(1+\frac{\sqrt3}{\sqrt5}\right)\right)\sqrt{\frac{3}{5}}=-\frac23\)

It is not satisfying  (ii).

Option (3) is not correct.

Option (4): 

A + B + C = \(\frac{5}{9}\left(1+\frac{\sqrt3}{\sqrt5}\right)+\frac{8}{9}+\frac{5}{9}\left(1-\frac{\sqrt3}{\sqrt5}\right)\) = 2

and (A-C)α = \(\left(\frac{5}{9}\left(1+\frac{\sqrt3}{\sqrt5}\right)-\frac{5}{9}\left(1-\frac{\sqrt3}{\sqrt5}\right)\right)\sqrt{\frac{3}{5}}=\frac23\)

Hence it satisfies both equations (i) and (ii).

Option (4) is correct.

Numerical Analysis Question 6:

Consider the numerical integration formula

\(\int_{-1}^1\) g(x) dx ≈ g(α) + g(-α),

where α = (0.2)1/4. Which of the following statements are true?

  1. The integration formula is exact for polynomials of the form a + bx, for all a, b ∈ \(\mathbb{R}\)
  2. The integration formula is exact for polynomials of the form a + bx + cx2, for all a, b, c ∈ \(\mathbb{R}\)
  3. The integration formula is exact for polynomials of the form a + bx + cx2 + dx3, for all a, b, c, d ∈ \(\mathbb{R}\)
  4. The integration formula is exact for polynomials of the form a + bx + cx3 + dx4, for all a, b, c, d ∈ \(\mathbb{R}\)

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 6 Detailed Solution

Explanation:

Given \(\int_{-1}^1g(x)dx\) ≈  g(α) + g(-α), α = (0.2)¼ - (i)

(a) ∵  \(\rm \int_{-1}^1(a+bx)dx=\left[ax+\frac{bx^2}{2}\right]^1_{-1}\)

           = =a + b/2 - (-a + b/2) = 2a

while g(α) + g(-α) = (a + bα) + (a - bα) = 2a 

⇒ for a + bx form, (i) gives exact value

Opt (1) True

(b) ∵ \(\rm \int_{-1}^1(a+bx+cx^2)dx=\left[ax+\frac{bx^2}{2}+\frac{cx^3}{3}\right]^1_{-1}\)

= a + b/2 + c/3 - (-a + b/2 - c/3)

= 2a + 2c/3

While g(α) + g(-α)  = a + bα + cα+ [a - bα + cα2]

= 2a + 2cα2 ≠ 2a + 2c/3

so, Not exact in this case.

Eg. Let a = 0, c = 1, b ∈ \(\mathbb{R}\) any thing

\(\int_{-1}^1\) g(x) = 2a + 2c/3 = 2/3,  g(α) + g(-α) = 2(0.2)\(^{\frac{1}{4}}\)

which is NOT equal ⇒ opt (2) False

Op(c). (Note: similar argument as (a) & (b)

\(∵ \int_{-1}^1\left(a+b x+c x^2+d x^3\right) d x\)

 

\(=\left[a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}-(-a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4})\right]\)

\(=2 a+\frac{2 c}{3}\)

While g(α) + g(-α) = a + bα + cα2 + dα3 + a - bα + cα- dα3 

=2 (a + cα2)

Again, in this case, both are not equal.

so opt (3) False.

Op(d): ∵ \(\int_{-1}^1\) (a + bx + cx+ dx4)dx = \(\left[a x+\frac{b x^2}{2}+\frac{c x^3}{4}+\frac{d x^5}{5}\right]_{-1}^1\) 

\(=a+\frac{b}{2}+\frac{c}{4}+\frac{d}{5}-(-a+\frac{b}{2}+\frac{c}{4}+\frac{d}{5})\)

= 2a + 2d/5

while g(α) + g(-α) = a + bα + cα3 + dα4 + (a - bα - cα+ dα4)

= 2a + 2dα= 2a + 2d(0.2)4/4

= 2a + 2d(0.2) = 2a +\( \frac{2 d}{5}\) ⇒ op(4) true 

Numerical Analysis Question 7:

Consider the Euler method for integration of the system of differential equations

ẋ = - y

ẏ = x

Assume that (\(x^n_i,y^n_i\)) are the points obtained for i = 0,1,..., n2 using a time-step h = 1/n starting at the initial point (x0,y0) = (1,0). Which of the following statements are true?

  1. The points (\(x^n_i,y^n_i\)) lie on a circle of radius 1
  2. \({\lim _{n \to \infty }}\left( {x_n^n,y_n^n} \right) = \left( {\cos \left( 1 \right),\sin \left( 1 \right)} \right)\)
  3. \({\lim _{n \to \infty }}\left( {x_2^n,y_2^n} \right) = \left( {1,0} \right)\)
  4. \({\left( {x_i^n} \right)^2} + {\left( {y_i^n} \right)^2} > 1\) for i ≥ 1

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 7 Detailed Solution

Correct statements are

\({\lim _{n \to \infty }}\left( {x_n^n,y_n^n} \right) = \left( {\cos \left( 1 \right),\sin \left( 1 \right)} \right)\)

\({\lim _{n \to \infty }}\left( {x_2^n,y_2^n} \right) = \left( {1,0} \right)\)

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) \({\left( {x_i^n} \right)^2} + {\left( {y_i^n} \right)^2} > 1\) for i ≥ 1

Options (2), (3) (4) are correct

Numerical Analysis Question 8:

Consider the Newton-Raphson method applied to approximate the square root of a positive number α. A recursion relation for the error en = x\(\alpha^{1/3}\) is given by

  1. \(e_{n+1}\approx {e_n^2\over e_n+3\alpha^{1/3}}\)
  2. \(e_{n+1}\approx {e_n^2\over e_n+2\alpha^{1/3}}\)
  3. \(e_{n+1}\approx {e_n\over e_n^2+2\alpha^{1/3}}\)
  4. \(e_{n+1}\approx {e_n^2\over e_n-3\alpha^{1/3}}\)

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 8 Detailed Solution

Concept:

Iterative formula for NR-method

\(x_{n+1}=x_n-\frac{f\left(x_n\right)}{f^{\prime}\left(x_n\right)}\) 

Explanation

Iterative formula for NR-method

\(x_{n+1}=x_n-\frac{f\left(x_n\right)}{f^{\prime}\left(x_n\right)}\) --- (i)

Let f(x) = x3 - α 

⇒ f'(x) = 3x2

So, putting in (i) we get

\(x_{n+1}=x_n-\frac{\left(x_n^3-\alpha\right)}{3x_n^2}\)

\(x_{n+1}=x_n-\frac{x_n}{3}+{\alpha\over 3x_n^2}\)

\(x_{n+1}=\frac23x_n+{\alpha\over 3x_n^2}\)

and given en = x\(\alpha^{1/3}\) ⇒ x= e\(\alpha^{1/3}\).

hence we get

\(e_{n+1}+\alpha^{1/3} =\frac23\left(e_{n}+\alpha^{1/3}\right)+\frac{α}{3\left(e_n+\alpha^{1/3}\right)^2}\)

\(e_{n+1}\approx {e_n^2\over e_n+2\alpha^{1/3}}\)

(2) is correct

Numerical Analysis Question 9:

Let Pf(x) be the interpolating polynomial of degree at most two that interpolates the function f(x) = x2|x| at the points x = −1, 0, 1. Then

\(\rm \displaystyle \sup _{x \in[-1,1]}\left|f(x)-P_f(x)\right|=\) ___________ (round off to TWO decimal places) 

Answer (Detailed Solution Below) 0.15

Numerical Analysis Question 9 Detailed Solution

Explanation:

f(x) = x2|x| at the points x = −1, 0, 1

f(x) = \(\begin{cases}x^3, x≥0\\-x^3, x\le0\end{cases}\)

So, 

x -1 0 1
f(x) 1 0 1

 

Then Pf(x) = x2

Now let g(x) = f(x) - Pf(x) = x2|x| - x2 

So, g(x) = \(\begin{cases}x^3-x^2, x\geq0\\-x^3-x^2, x\leq0\end{cases}\)

g'(x) = \(\begin{cases}3x^2-2x, x\geq0\\-3x^2-2x, x\leq0\end{cases}\)

For critical point

g'(x) = 0 ⇒ x = \(\begin{cases}0, \frac23, x\geq0\\0, -\frac23, x\leq0\end{cases}\)

Now, g(0) = 0 

g(2/3) = \(\frac8{27}-\frac49=-\frac{4}{27}\)

and g(-2/3) = \(\frac8{27}-\frac49=-\frac{4}{27}\)

max |g(x)| = \(\frac{4}{27}\) ≈ 0.15

Hence max g(x) = \(\rm \displaystyle \sup _{x \in[-1,1]}\left|f(x)-P_f(x)\right|=0.15\) 

Answer is 0.15

Numerical Analysis Question 10:

Let a ∈ ℝ and h be a positive real number. For any twice-differentiable function f : ℝ → ℝ, let Pf(x) be the interpolating polynomial of degree at most two that interpolates f at the points a − h, a, a + h. Define d to be the largest integer such that any polynomial g of degree d satisfies \(\rm g^{\prime \prime}(a)=P_g^{\prime \prime}(a)\).

The value of d is equal to __________ (answer in integer)

Answer (Detailed Solution Below) 2

Numerical Analysis Question 10 Detailed Solution

Explanation:

Let a = 0 and h = 1 then the points are −1, 0, 1

and let f(x) = x2

So, 

x -1 0 1
f(x) 1 0 1

 

Then Pf(x) = x2

So, g''(0) = Pg''(0) = 2

So, g''(x) = Pg''(x) = 2

then g(x) = x2 + c1x + c2

So, g(x) is a polynomial of degree 2.

The value of d is equal to 2.

Get Free Access Now
Hot Links: teen patti real cash withdrawal all teen patti teen patti win teen patti game teen patti boss