Calculus of Variations MCQ Quiz in मराठी - Objective Question with Answer for Calculus of Variations - मोफत PDF डाउनलोड करा

Last updated on Mar 22, 2025

पाईये Calculus of Variations उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Calculus of Variations एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Calculus of Variations MCQ Objective Questions

Top Calculus of Variations MCQ Objective Questions

Calculus of Variations Question 1:

The functional 01(5x2+3y42y2)dx, y(1) = 1 achieves its

  1. Strong maxima on not all its extremals.
  2. Strong maxima on all its extremals.
  3. Weak maximum on some, but not all of its extremals.
  4. Strong minimum on some, but not on all of its extremals.

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 1 Detailed Solution

Concept:

The extremum of functional I[y(x)] = x1x2f(x,y,y)dx, y(x1) = y1, y(x2) = yattains 

(i) strong maxima if fyy < 0 for all y'

(ii) weak maxima if fyy < 0 for some y'

(iii) strong minima if fyy > 0 for all y'

(iv) weak minima if fyy > 0 for some y'

Explanation:

I[y(x)] = 01(5x2+3y42y2)dx, y(1) = 1

So f = 5x2+3y42y2

fy=4y

So fyy=4 < 0 for all y'

Therefore functional achieves a strong maxima on all its extremals.

Option (2) is correct

Calculus of Variations Question 2:

Consider J[y] = 01[(y)2+2y]dx subject to y(0) = 0, y(1) = 1.

Then inf J[y]

  1. is 2312
  2. is 2124
  3. is 1825
  4. does not exist

Answer (Detailed Solution Below)

Option 1 : is 2312

Calculus of Variations Question 2 Detailed Solution

Concept:

Let If I(Y) is an extremum of the functional J[y] = abf(x,y,y)dx be a functional such that y(a) = c, y(b) = d then y(x) satisfy Euler-Lagrange's equation

fyddx(fy) = 0

Explanation:

J[y] = 01[(y)2+2y]dx subject to y(0) = 0, y(1) = 1

here f = y'2 + 2y

Using Euler-Lagrange's equation we get

fyddx(fy) = 0

⇒ 2 - ddx(2y') = 0

⇒ y'' - 1 = 0

⇒ y'' = 1

Integrating both sides

y' = x + c1

Integrating again

⇒ y = x22+c1x+c2

Given y(0) = 0, y(1) = 1

y(0) = 0 ⇒ c2 = 0

y(1) = 1 ⇒ 1 = 1/2 + c1 ⇒ c1 = 1/2

So, y(x) = x22+x2 so, y' = x + 1/2

Therefore

Inf[J] = 01[(y)2+2y]dx

         = 01[(x+12)2+2(x22+x2)]dx

        = 01(x2+x+14+x2+x)dx

       = 01(2x2+2x+14)dx

      = [23x3+x2+x4]01 = 2312

Hence option (1) is correct

Calculus of Variations Question 3:

Let x*(t) be the curve which minimizes the functional

J(x)=01[x2(t)+x˙2(t)]dt

satisfying x(0) = 0, x(1) = 1. Then the value of x* (12) is

  1. e1+e
  2. 2e1+e
  3. e1+2e
  4. 2e1+2e

Answer (Detailed Solution Below)

Option 1 : e1+e

Calculus of Variations Question 3 Detailed Solution

Concept:

For x1x2F(x,y,y)dx extremal are given by Fyddx(Fy)=0

Explanation:

J(x)=01[x2(t)+x˙2(t)]dt

F(t, x, x') = [x2(t) + x'2(t)]

Fyddx(Fy)=0 ⇒ 2x - ddt(2x') = 0

⇒ x'' - x = 0 ⇒ x(t) = Aet + Bet

Now, x(0) = 0 ⇒ A+B = 0 ........... (1)

x(1) = 1 ⇒ Ae + Be-1  = 1 ........... (2)

Solving (1) & (2) we get

B = e1e2 & A = - e1e2

x(t) = - e1e2 et + e1e2 et

x(12) = e1e2[e12 - e12] = e1+e

Hence, Option (1) is true

Calculus of Variations Question 4:

What is the extremal of the functional

J[y]=10(12xy(y)2)dx

subject to y(0) = 0 and y(-1) = 1?

  1. y = x2
  2. y=2x2+x43
  3. y = -x3
  4. y=x2+x42

Answer (Detailed Solution Below)

Option 3 : y = -x3

Calculus of Variations Question 4 Detailed Solution

Concept:

Let the functional be I(y) = abF(x,y,y)dx subject to y(a) = y1, y(b) = y2 then the extrema satisfy the Euler-Lagrange's equation

Fyddx(Fy) = 0

where H = F + λH

Explanation:

J[y]=10(12xy(y)2)dx, y(0) = 0, y(-1) = 1

Here F = 12xy - (y)2

Then using

Fyddx(Fy) = 0

⇒ 12x - ddx(2y) = 0

⇒ 12x + 2y'' = 0

⇒ y'' = -6x

Integrating both sides we get

y' = - 3x2 + a

Again integrating

 y = - x3 + ax + b

Given y(0) = 0, y(-1) = 1

⇒ b = 0

and

1 = 1 - a + 0

⇒ a = 0

Hence extremal is

y = x3 

Hence, Option (3) is correct

Calculus of Variations Question 5:

The curve eternizing the functional I(y)=121+(y(x))2xdx y(1) = 0, y(2) = 1 is

  1. an ellipse
  2. a parabola 
  3. a circle
  4. a straight line

Answer (Detailed Solution Below)

Option 3 : a circle

Calculus of Variations Question 5 Detailed Solution

Concept:

The extremal of the functional I(y)=abF(x,y,y)dx, y(a) = y1, y(b) = y2, will satisfy Euler equation

Fyddx(Fy) = 0

Explanation:

I(y)=121+(y(x))2xdx, y(1) = 0, y(2) = 1

F(x, y, y') = 1+(y(x))2x

Then from Euler equation we get

Fyddx(Fy) = 0

⇒ 0 - ddx(1x.121+y2.2y) = 0

⇒ ddx(yx1+y2) = 0

⇒ yx1+y2 = c (Integrating)

⇒ y2x2(1+y2) = c2 (squaring both sides)

⇒ y2=c2x2(1+y2)

⇒ y2(1c2x2)=c2x2

⇒ y2=c2x21c2x2

⇒ y' = cx1c2x2

⇒ dy = cx1c2x2dx

Integrating both sides

⇒ y = 1c1c2x2 + b....(i)

Given y(1) = 0, y(2) = 1

y(1) = 0 ⇒ 0 = 1c + b ⇒ b = 1/c

y(2) = 1 ⇒ 1 = 1c14c2 + b

⇒ 1 = 1c14c2+1c (as b = 1/c)

⇒ c = 1 -  14c2

⇒ (1 - c)2 = 1 - 4c2

⇒ 1 - 2c + c2 = 1 - 4c2

⇒ 5c2 = 2c

⇒ c = 2/5 as c can't be zero

So b = 1/c = 5/2 

Now, from (i)

(y - b) = 1c1c2x2

⇒ (y - b)21c2(1c2x2)

⇒ (y - b)2 + x2 =  1c2

Putting the values

Extremize function is

(y52)2+x2=(52)2 which is an equation of a circle

(3) is correct

Calculus of Variations Question 6:

Let J(u)=01[ux2+4u2x2]xdx, where u(x) is a smooth function defined on [0,1] satisfying u(0) = 0 and u(1) = 1 which of the functions minimizes J ? 

  1. u(x) = x2
  2. u(x)=12x2
  3. u(x)=12x2
  4. u(x)=14x2

Answer (Detailed Solution Below)

Option 1 : u(x) = x2

Calculus of Variations Question 6 Detailed Solution

Concept:

The extremal of the functional J(u)=abF(x,u,u)dx, u(a) = u1, u(b) = u2, will satisfy Euler equation

Fuddx(Fu) = 0

Explanation:

J(u)=01[ux2+4u2x2]xdx, u(0) = 0 and u(1) = 1

F(x, u, ux) = (ux2+4u2x2)x = xux2+4u2x

Then from Euler equation we get

Fuddx(Fux) = 0

8uxddx(2xux) = 0

4uxuxxuxx = 0

⇒ x2uxx+xux4u = 0

⇒ (x2D2 +xD - 4)u = 0 where D = ddx

Then auxillay equation will be

m2 + (1 - 1)m - 4 = 0

⇒ m2 - 4 = 0 ⇒ m = ± 2

General solution is

u = c1x2+c2x2

Given u(0) = 0 and u(1) = 1

u(0) = 0 will satisfy only when c2 = 0

and u(1) = 1 implies c1 = 1

hence extremal is u(x) = x2

(1) is correct

Alternate Method Given u(0) = 0 and u(1) = 1 

Option 2: u(x)=12x2 not satisfying u(1) = 1, so (2) can't be a solution

Option 3: u(x)=12x2 not satisfying u(1) = 1, so (3) can't be a solution

Option 4: u(x)=14x2 not satisfying u(1) = 1, so (4) can't be a solution

Option 1: u(x) = x2, satisfying u(0) = 0 and u(1) = 1 so this can be extremal solution

(1) is correct

Calculus of Variations Question 7:

The extremals of the functional J[y] = 01[720x2y(y)2]dx Subject to y(0) = y'(0) = y(1) = 0, y'(1) = 6, are 

  1. x6 + 2x3 - 3x2
  2. x5 + 4x4 - 5x3
  3. x5 + x4 - 2x3
  4. x6 + 4x3 - 6x2

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 7 Detailed Solution

Explanation:

J[y] = 01[720x2y(y)2]dx

Using

fy - ddx(fy) + d2dx2(fy) = 0

720x2 - 0 + d2dx2(-2y'') = 0

yiv = 360x2

y''' = 120x3 + a

y'' = 30x4 + ax + b

y' = 6x5 + a2x2 + bx + c 

Using 

y'(0) = 0  we get c = 0

So y' = 6x5 + a2x2 + bx 

y = x6 + a6x3 + b2x2 + d

using y(0) = 0 we get d = 0

y = x6 + a6x3 + b2x2 

Again using y(1) = 0 and y'(1) = 6 we get

a6 + b2 = -1 ⇒ a + 3b = -6

and a2 + b = 0

Solving them we get a = 12, b = -6

Hence y = x6 + 2x3 - 3x2

Hence, (1) correct

Calculus of Variations Question 8:

Let X = {y ∈ C1[0, π]:y(0) = 0 = y(π)} and define J:X → ℝ by J(y)=0πy2(1y2)dx. Which of the following statements are true?

  1. ≡ 0 is a local minimum for J with respect to the C1 norm on X
  2. ≡ 0 is a local maximum for J with respect to the Cnorm on X
  3. ≡ 0 is a local minimum for J with respect to the sup norm on X
  4. ≡ 0 is a local maximum for J with respect to the sup norm on X

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 8 Detailed Solution

Concept:

Euler Lagrange equation:

 fyddx(fy)=0

Explanation:

f(x, y, y') = y2(1-y'2)

so fy= 2y(1-y'2), fy = -2y2y'

Using Euler-Lagrange equation

2y(1 - y'2) - ddx- 2y2y') = 0

y(1 - y'2) + ddx(y2y') = 0

y - yy'2 + y2y'' + 2yy'2 = 0

y + yy'2 + y2y'' = 0

1 + y'2 + yy'' = 0

 ddx(yy') = -1

Integrating both sides

yy' = - x + c

ydydx = - x + c

ydy = (-x + c)dx

Again integrating both sides again

y2/2 = -x2/2 + cx + d

Putting y(0) = 0 we get

0 = d

And putting y(π) = 0 we get

0 = - π2 / 2 +cπ ⇒ c = π / 2

Hence we get

 y2 / 2 = - x/ 2 + πx / 2

y= - x2 + πx ⇒ y=x2+πx ,which is a circle of centre (π/2, 0) and radius π / 2

To find the local maxima or minima

 y' = 2x+π2x2+πx

Stationary point is given by

y' = 0 ⇒  x = π / 2

Also we have the endpoints x = 0, x = π 

Now y(π / 2) = π2/4+π2/2 = π  / 2, y(π) =0, y(0) = 0.

So y has local maxima at x = π / 2 and local minima at x = 0, x = π 

Now ||y|| = yTy=x2+πx 

so same as y,  ||y(π)|| =0, ||y(0)|| = 0 and sup ||y|| = π  / 2.

So option (1) is correct.

Calculus of Variations Question 9:

Which of the following is the extremal of the functional 01(xy+y2y)dx, y(0) = 1, y(1) = 2

  1. y = x + 1
  2. y = x2 + 1
  3. y = 4x
  4. It has no extremal

Answer (Detailed Solution Below)

Option 4 : It has no extremal

Calculus of Variations Question 9 Detailed Solution

Concept:

The functional x0x1f(x,y,y)dxy(x0)=y0,y(x1)=y1 satisfy 

fyddx(fy)=0

Explanation:

here f = xy + y2y'

Using

fyddx(fy)=0

⇒ x + 2yy' - ddx(y2) = 0

⇒ x + 2yy' - 2yy' = 0

⇒ x = 0

Putting  y(1) = 2 we get

1 = 0 which is not true.

Hence this functional has no extremal.

Option (4) is true.

Calculus of Variations Question 10:

The extremizer of the problem min[1211[y(x))2+(y(x))2]dx] subject to yc1[1,1],11xy(x)dx=0 and y(1)=y(1)=1 is

  1. e1+e2(ex+ex)+x21
  2. e1+e2(ex+ex)+1x2
  3. e1+e2(ex+ex)
  4. e1+e2(ex+ex)+sin(2πx)

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 10 Detailed Solution

Concept:

To minimize the functional, we use the Euler-Lagrange equation for the functional F(x,y,y)=12([y(x)]2+[y(x)]2),

which is Fyddx(Fy)=0

Explanation:

min1211([y(x)]2+[y(x)]2)dx

subject to the conditions:

1. yC1[1,1] (i.e., y(x) is continuously differentiable).

2. 11xy(x)dx= 0

3. y(1)=y(1)=1

Euler-Lagrange Equation

Fy=y(x)

Fy=y(x)

ddx(Fy)=y(x)
 

Substitute into the Euler-Lagrange equation

y(x)y(x)=0

This is a second-order linear differential equation,

y(x)=y(x)

The general solution to this differential equation is:

y(x)=Aex+Bex

where A and B are constants to be determined using the boundary conditions.

 Apply y(1) = 1 :

Ae1+Be1=1

Ae+Be=1

2. Apply y(-1) = 1 :   Ae1+Be1=1

Ae+Be=1

From equations (1) and (2), we can solve for A and B . Add both equations

Ae+Be+Ae+Be=2

⇒ A(e+1e)+B(e+1e)=2

⇒ (A+B)(e+1e)=2

Thus, A+B=2e+1e=2e2+1e=2ee2+1

Now subtract equation (2) from equation (1):

AeAe+BeBe=0

⇒ A(e1e)+B(e1e)=0

Thus, (AB)(e1e)=0

Since, e1e0 , it must be thatA=B

Substitute A = B into equation (3):

2A(e+1e)=2

Solve for A :

A=1e+1e=ee2+1

Thus, A=B=ee2+1.

y(x)=ee2+1(ex+ex)

This matches option 3).

Get Free Access Now
Hot Links: teen patti real cash teen patti real cash game teen patti customer care number teen patti star apk