Numerical Analysis MCQ Quiz - Objective Question with Answer for Numerical Analysis - Download Free PDF

Last updated on May 19, 2025

Latest Numerical Analysis MCQ Objective Questions

Numerical Analysis Question 1:

Let dydx=1x+y, x0 = 0, y(x0) = 1, h = 0.5. Using Runge-Kutta method the value of k1 and k2 are

  1. k1 = 0.3
  2. k1 = 0.5
  3. k2 = 0.333
  4. k2 = 0.555

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 1 Detailed Solution

Concept:

Let y' = f(x, y) then using Runge-Kutta method

k1 = hf(x0, y0) and

k2 = hf(x0+h2,y0+k12) 

Explanation:

Given 

dydx=1x+y, x0 = 0, y(x0) = 1, h = 0.5. 

k1hf(x0, y0) = 0.5 × f(0, 1) = 0.5 × 1 = 0.5

k2 = hf(x0+h2,y0+k12) 

   = 0.5 f(0+0.25,1+0.25) 

  = 0.5 × f(0.25, 1.25)

 = 0.5 × 11.50 = 0.333

Option (2) and (3) are true. 

Numerical Analysis Question 2:

Consider the Newton-Raphson method applied to approximate the square root of a positive number α. A recursion relation for the error en = xα1/3 is given by

  1. en+1en2en+3α1/3
  2. en+1en2en+2α1/3
  3. en+1enen2+2α1/3
  4. en+1en2en3α1/3

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 2 Detailed Solution

Concept:

Iterative formula for NR-method

xn+1=xnf(xn)f(xn) 

Explanation

Iterative formula for NR-method

xn+1=xnf(xn)f(xn) --- (i)

Let f(x) = x3 - α 

⇒ f'(x) = 3x2

So, putting in (i) we get

xn+1=xn(xn3α)3xn2

xn+1=xnxn3+α3xn2

xn+1=23xn+α3xn2

and given en = xα1/3 ⇒ x= eα1/3.

hence we get

en+1+α1/3=23(en+α1/3)+α3(en+α1/3)2

en+1en2en+2α1/3

(2) is correct

Numerical Analysis Question 3:

When x1 - x0 = 12=(x2x1)=(x3x2), then f(x0, x1, x2, x3) is equal to

  1. 43Δ3f(x0)
  2. Δ33!f(x0)
  3. 83Δ3f(x0)
  4. 23Δ3f(x0)

Answer (Detailed Solution Below)

Option 1 : 43Δ3f(x0)

Numerical Analysis Question 3 Detailed Solution

Explanation:

h = x1 - x0 = 12=(x2x1)=(x3x2)

Then 

f(x0, x1, x2, x3) = 3f(x0)3!h3

                       = 3f(x0)6×18 = 43Δ3f(x0)

Option (1) is true.

Numerical Analysis Question 4:

In solving by iteration method, the equation x2 - x - 1 = 0, to be convergent in the neighbourhood of its root x = -0.62 can be written in which of the following form? 

  1. x=11x
  2. x = 2x - x2 + 1
  3. x=x+1
  4. x = x2 - 1

Answer (Detailed Solution Below)

Option 3 : x=x+1

Numerical Analysis Question 4 Detailed Solution

Concept:

The equation f(x) = 0 is convergent at x = a in iteration method if |ϕ'(x)| < 1 in the neighbourhood of x = a where x = ϕ(x) is obtained form f(x) = 0.

Explanation:

x2 - x - 1 = 0....(i)

(1): x=11x

⇒ x2 = x - 1

⇒ x2 - x + 1 = 0 not same as (i)

Option (1) is false.

(2): x = 2x - x2 + 1

⇒ - x2 - x + 1 = 0 not same as (i)

Option (2) is false.

(3): x=x+1

⇒ x2 = x + 1

⇒ x2 - x - 1 = 0 same as (i)

So, ϕ(x) = x+1

Then ϕ'(x) = 12x+1

Hence |ϕ'(x)| < 1 in the neighbourhood of x = -0.62

Option (3) is true.

(1): x = x2 - 1

⇒ x2 - x - 1 = 0, same as (i)

ϕ(x) = x2 - 1

Then ϕ'(x) = 2x

Hence |ϕ'(-0.62)| = 1.24 not less than 1.

Option (4) is false.

Numerical Analysis Question 5:

Given - 

x :  0 π / 6 π / 3 π / 2
f(x) = esin x 1 1.64872 2.3632 2.71828


Then by Simpson’s 38 rule, value of 0π2esinxdx is - (using π = 3.14159)

  1. 3.09329
  2. 3.0999
  3. 3.9529
  4. 3.09000

Answer (Detailed Solution Below)

Option 1 : 3.09329

Numerical Analysis Question 5 Detailed Solution

Concept:

By Simpson's 3/8 rule

abf(x)[f(a)+3f(a+h)+3f(a+2h)+f(b)]

where h = ba3

Explanation:

From given data

a = 0, a + h = π / 6, a + 2h = π / 3, a + 4h = b = π / 2, 

h = π / 6 - 0 = π / 6

0π2esinxdx = 0π2f(x)dx

                = 38h[f(0) + 3f(π / 6) + 3f(π / 3) + f(π / 2)] 

              = 38×π6[1+3 × 1.64872 + 3 × 2.3632 + 2.71828]

             ≈ 3.09329

Option (1) is true.

Top Numerical Analysis MCQ Objective Questions

Which of the following values of a, b, c and d will produce a quadrature formula

11 f(x) dx ≈ af(−1) + bf(1) + cf'(−1) + df'(1)

that has degree of precision 3?

  1. a = 1, b = 1, c = 13, d = 13
  2. a = −1, b = 1, c = 13, d = 13
  3. a = 1, b = 1, c = 13, d = 13
  4. a = 1, b = −1, c = 13, d = 13

Answer (Detailed Solution Below)

Option 1 : a = 1, b = 1, c = 13, d = 13

Numerical Analysis Question 6 Detailed Solution

Download Solution PDF

Explanation:

Given 

11 f(x) dx ≈ af(−1) + bf(1) + cf'(−1) + df'(1)....(i)

Let f(x) = 1 then from (i)

11dx = a + b 

⇒ 2 = a + b...(ii)

For f(x) = x ⇒ f'(x) = 1 so from (i)

11x dx = -a + b + c + d

0 = -a + b + c + d....(iii)

For f(x) = x2 ⇒ f'(x) = 2x so from (i)

11x2 dx = a + b - 2c + 2d

23 = a + b - 2c + 2d....(iv)

and for f(x) = x3 ⇒ f'(x) = 3x2 so from (i)

11x3 dx = -a + b + 3c + 3d

0 = -a + b + 3c + 3d....(v)

Multiply (iii) by 3 we get

-3a  +3b + 3c + 3d = 0...(vi)

Subtract (v) and (vi) we get

2a - 2b = 0 ⇒ a = b...(vii)

Putting a = b in (ii)

2a = 2 ⇒ a = 1

Hence a = b = 1

Putting these values of a and b in (iii) and (iv) we get

c + d = 0 ...(viii) and 

2 - 2c + 2d = 23

2c - 2d = 43 ⇒ c - d = 23 ...(ix)

adding (viii) and (ix) we get

2c = 23 so c = 13

Hence d = - 13    

Therefore we get a = 1, b = 1, c = 13, d = 13

Option (1) is correct

Let f be an infinitely differentiable real-valued function on a bounded interval I. Take n ≥ 1 interpolation points {x0, x1, ....., xn-1}. Take n additional interpolation points

xn+j = xj + ε, j = 0, 1, ....., n - 1

where ε > 0 is such that {x0, x1, ....., x2n-1} are all distinct.

Let p2n-1 be the Lagrange interpolation polynomial of degree 2n - 1 with the interpolation points {x0, x1, ....., x2n-1} for the function f.

Let q2n-1 be the Hermite interpolation polynomial of degree 2n - 1 with the interpolation points {x0, x1, ....., xn-1} for the function f. In the ε → 0 limit, the quantity

supx1|p2n1(x)q2n1(x)|

  1. does not necessarily converge
  2. converges to 12n
  3. converges to 0 
  4. converges to 12n+1

Answer (Detailed Solution Below)

Option 3 : converges to 0 

Numerical Analysis Question 7 Detailed Solution

Download Solution PDF

The quantity

supx1|p2n1(x)q2n1(x)| converges to 0 

Option (3) is correct

Consider the linear system 𝑀𝑥 = 𝑏, where 𝑀 = [21 43] and b = [2 5].

Suppose 𝑀 = 𝐿𝑈, where 𝐿 and U are lower triangular and upper triangular square matrices, respectively. Consider the following statements:

𝑃: If each element of the main diagonal of 𝐿 is 1, then 𝑡𝑟𝑎𝑐𝑒(𝑈) = 3.

𝑄: For any choice of the initial vector 𝑥(0) , the Jacobi iterates 𝑥(𝑘) , 𝑘 = 1,2,3 … converge to the unique solution of the linear system 𝑀𝑥 = 𝑏.

Then 

  1. both 𝑃 and 𝑄 are TRUE
  2. 𝑃 is FALSE and 𝑄 is TRUE
  3. 𝑃 is TRUE and 𝑄 is FALSE
  4. both 𝑃 and 𝑄 are FALSE

Answer (Detailed Solution Below)

Option 1 : both 𝑃 and 𝑄 are TRUE

Numerical Analysis Question 8 Detailed Solution

Download Solution PDF

Concept:

A square matrix (aij) is called a diagonally dominant matrix if |aii| ≥ ji|aij| for all i

Explanation:

For P,

M = [21 43]

Let M = LU, where 𝐿 and U are lower triangular and upper triangular square matrices

Each element of the main diagonal of 𝐿 is 1

Let L = [10a1] and U = [bc0d] 

Then

[21 43] = [10a1][bc0d]

⇒ [21 43] = [bcabac+d]

Comparing both sides

b = 2, c = -1, ab = -4 and ac + d = 3

Substituting b = 2 in ab = -4 we get a = -2

Again substituting a = -2 and c = -1 in ac + d = 3 we get

(-2)(-1) + d = 3 ⇒  2 + d = 3 ⇒ d = 1

So U = [2101]

Hence trace(U) = 1 + 2 = 3

P is TRUE

For Q,

M = [21 43]

M is not a diagonally dominant matrix as 3  |-4|

Then HJacobi = D-1(L + U)  where

D is diagonal matric ie..e, [20 03] and L + U = [01 40]

So, D-1[120 013]

So  HJacobi = [120 013][01 40] = [012 430]

Hence eigenvalues re given by

λ2 - 0λ - 2/3 = 0 

⇒ λ = ±23

Since |λ| < 1

Hence for any choice of the initial vector 𝑥(0) , the Jacobi iterates 𝑥(𝑘) , 𝑘 = 1,2,3 … converge to the unique solution of the linear system 𝑀𝑥 = 𝑏.

Q is TRUE

both 𝑃 and 𝑄 are TRUE

(1) is correct

Numerical Analysis Question 9:

Using Euler’s method with the step size 0.05, the approximate value of the solution for the initial value problem 

dydx=3x+2y+1,y(1)=1

at x = 1.1 (rounded off to two decimal places), is 

  1. 1.50
  2. 1.65
  3. 1.25
  4. 1.15

Answer (Detailed Solution Below)

Option 3 : 1.25

Numerical Analysis Question 9 Detailed Solution

Concept:

Euler method to solve y' = f(x, y), y(x0) = y0, with step size h is

yn+1 = yn + h.[f(xn, yn)]

Explanation:

dydx=3x+2y+1,y(1)=1 h = 0.05, 

x0 = 1, y0 = 1, h = 0.05

x1 = x0 + h = 1 + 0.05 = 1.05

x2 = x0 + 2h = 1 + 2(0.05) = 1 + 0.1 = 1.1

So we need to find y(x2) = y2

y1 = y0 + h. f(x0, y0) = 1 + 0.05 × f(1, 1) = 1.12247

y2y1 + h. f(x1, y1) = 1.12247 + 0.05 × f(1.05, 1.12247) = 1.248 ≈ 1.25 rounded off to two decimal places

Hence option (3) is correct

Numerical Analysis Question 10:

Consider the Newton-Raphson method applied to approximate the square root of a positive number α. A recursion relation for the error en = x-√α is given by

  1. en+1=12(en+αen)
  2. en+1=12(enαen)
  3. en+1=12en2en+α
  4. en+1=en2en+2α

Answer (Detailed Solution Below)

Option 3 : en+1=12en2en+α

Numerical Analysis Question 10 Detailed Solution

Explanation

Recall: Iterative formula for NR-method

xn+1=xnf(xn)f(xn) --- (i)

Nos let x = √α ⇒ x2 - α = 0

so assume that f(x) = x2 - α

 f'(x) = 2x

and given en = xn - √α ⇒x= e+ √α

so, by (i)

en+1+α=(en+1+α)(en+α)2α2(en+α)

en+1+α=2[en2+α+2enα](en+α)2+α2(en++α)

en+1=en2+α+2enα+α2(en+α)α

=en2+α+2enα+α2enα2α2(en+α)

=en2/2(en+α)

(3) is correct

Numerical Analysis Question 11:

Let a,b,cR be such that the quadrature rule 11f(x)dx=af(1)+bf(0)+cf(1) is exact for all polynomials of degree less than or equal to 2. Then a + b + c equal to

  1. 4
  2. 3
  3. 2
  4. 1

Answer (Detailed Solution Below)

Option 1 : 4

Numerical Analysis Question 11 Detailed Solution

Concept:

Basic ideas of polynomial .

Calculation:

Given 

11f(x)dx  = af(-1) + bf'(0) + cf'(1)  . . . . . . (i)

is exact for all polynomials of degree less than or equal to 2

let f(x) = 1

So from equation (i), we get 

 

111dx = a + 0 + 0

2 = a . . . . . . . (ii)

let f(x) = x 

now from equation (i) , we get 

11xdx = -a + b + c

b + c = 2 . . . . . . (iii)

now adding equation (ii) and (iii) , we get 

a + b + c = 2 + 2

a + b + c = 4

Hence option (1) correct

Numerical Analysis Question 12:

Let dydx=1x+y, x0 = 0, y(x0) = 1, h = 0.5. Using Runge-Kutta method the value of k1 and k2 are

  1. k1 = 0.3
  2. k1 = 0.5
  3. k2 = 0.333
  4. k2 = 0.555

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 12 Detailed Solution

Concept:

Let y' = f(x, y) then using Runge-Kutta method

k1 = hf(x0, y0) and

k2 = hf(x0+h2,y0+k12) 

Explanation:

Given 

dydx=1x+y, x0 = 0, y(x0) = 1, h = 0.5. 

k1hf(x0, y0) = 0.5 × f(0, 1) = 0.5 × 1 = 0.5

k2 = hf(x0+h2,y0+k12) 

   = 0.5 f(0+0.25,1+0.25) 

  = 0.5 × f(0.25, 1.25)

 = 0.5 × 11.50 = 0.333

Option (2) and (3) are true. 

Numerical Analysis Question 13:

Let S denote the set of all 2 × 2 matrices A such that the iterative sequence generated by the Gauss-Seidel method applied to the system of linear equations A(x1 x2)=(2 3) converges for every initial guess. Then which of the following statements are true?  

  1. (58 12)S
  2. (32 12)S
  3. (31 23)S
  4. (22 43)S

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 13 Detailed Solution

The Correct answers are (1), (2) and (3).

We will update the solution later.

Numerical Analysis Question 14:

Let 𝑝(𝑥) = 𝑥3 − 2𝑥 + 2. If 𝑞(𝑥) is the interpolating polynomial of degree less than or equal to 4 for the data

x -2 -1 0 1 3
q(x) p(-2) p(-1) 2.5 p(1) p(3)

then the value of d4qdx4 at 𝑥 = 0 is ______.

Answer (Detailed Solution Below) 2

Numerical Analysis Question 14 Detailed Solution

Concept:

The Lagrange interpolating polynomial is the polynomial P(x) of degree ≤ (n-1) that passes through the n points (x1, y1), (x2, y2), ..., (xn, yn) and is given by
 
P(x) = j=1nyjΠk=1,kjnxxkxjxk
 

Explanation:

𝑝(𝑥) = 𝑥3 − 2𝑥 + 2

Given 

x -2 -1 0 1 3
q(x) p(-2) p(-1) 2.5 p(1) p(3)

 

Now, p(-2) = -8 + 4 + 2 = -2; p(-1) = -1 + 2 + 2 = 3

p(1) = 1 - 2 + 2 = 1, p(3) = 27 - 6 + 2 = 23

Then the given data becomes

x -2 -1 0 1 3
q(x) -2 3 2.5 1 23

 

Then using Lagrange interpolating polynomial

q(x) = (x+1)(x0)(x1)(x3)(2+1)(20)(21)(23) × (-2) + (x+2)(x0)(x1)(x3)(1+2)(10)(11)(13) × 3 + (x+2)(x+1)(x1)(x3)(0+2)(0+1)(01)(03) × 2.5 + (x+2)(x+1)(x0)(x3)(1+2)(1+1)(10)(03) × 1 + (x+2)(x+1)(x0)(x1)(3+2)(3+1)(30)(31) × 23

Now, d4qdx4 at x = 0, will be 4! × coefficient of x4 

So, d4qdx4 = 24(230+38+512+112+23120

             = - 85 - 9 + 10 - 2 + 235 = 2

Hence answer is 2

Numerical Analysis Question 15:

Which of the following values of a, b, c and d will produce a quadrature formula

11 f(x) dx ≈ af(−1) + bf(1) + cf'(−1) + df'(1)

that has degree of precision 3?

  1. a = 1, b = 1, c = 13, d = 13
  2. a = −1, b = 1, c = 13, d = 13
  3. a = 1, b = 1, c = 13, d = 13
  4. a = 1, b = −1, c = 13, d = 13

Answer (Detailed Solution Below)

Option 1 : a = 1, b = 1, c = 13, d = 13

Numerical Analysis Question 15 Detailed Solution

Explanation:

Given 

11 f(x) dx ≈ af(−1) + bf(1) + cf'(−1) + df'(1)....(i)

Let f(x) = 1 then from (i)

11dx = a + b 

⇒ 2 = a + b...(ii)

For f(x) = x ⇒ f'(x) = 1 so from (i)

11x dx = -a + b + c + d

0 = -a + b + c + d....(iii)

For f(x) = x2 ⇒ f'(x) = 2x so from (i)

11x2 dx = a + b - 2c + 2d

23 = a + b - 2c + 2d....(iv)

and for f(x) = x3 ⇒ f'(x) = 3x2 so from (i)

11x3 dx = -a + b + 3c + 3d

0 = -a + b + 3c + 3d....(v)

Multiply (iii) by 3 we get

-3a  +3b + 3c + 3d = 0...(vi)

Subtract (v) and (vi) we get

2a - 2b = 0 ⇒ a = b...(vii)

Putting a = b in (ii)

2a = 2 ⇒ a = 1

Hence a = b = 1

Putting these values of a and b in (iii) and (iv) we get

c + d = 0 ...(viii) and 

2 - 2c + 2d = 23

2c - 2d = 43 ⇒ c - d = 23 ...(ix)

adding (viii) and (ix) we get

2c = 23 so c = 13

Hence d = - 13    

Therefore we get a = 1, b = 1, c = 13, d = 13

Option (1) is correct

Get Free Access Now
Hot Links: teen patti master king teen patti real cash game teen patti real cash withdrawal