Divergence MCQ Quiz in मराठी - Objective Question with Answer for Divergence - मोफत PDF डाउनलोड करा

Last updated on Mar 16, 2025

पाईये Divergence उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Divergence एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Divergence MCQ Objective Questions

Top Divergence MCQ Objective Questions

Divergence Question 1:

The divergence of the vector \(\vec F = {x^2}y\hat i + xyz\hat j - {x^2}{y^2}\hat k\) is ________.

  1. 2xy + xy
  2. 2x + yz
  3. 2xy + xz
  4. 2x + xz

Answer (Detailed Solution Below)

Option 3 : 2xy + xz

Divergence Question 1 Detailed Solution

Divergence of a function \(F = {F_1}\hat i + {F_2}\hat j + {F_3}\hat k\)

\( = \nabla \cdot F = \frac{{\partial {F_1}}}{{\partial x}} + \frac{{\partial {F_2}}}{{\partial y}} + \frac{{\partial {F_3}}}{{\partial z}}\)

\( = \frac{\partial }{{\partial x}}\left( { x^2y} \right) + \frac{\partial }{{\partial y}}\left( xyz \right)+\frac{\partial }{{\partial z}}\left(- x^2y^2 \right) = 2xy+xz\)

Divergence Question 2:

The divergence of the vector –yi + xj is ________.

Answer (Detailed Solution Below) 0

Divergence Question 2 Detailed Solution

Explanation:

Divergence of a vector function \(F = {F_1}\hat i + {F_2}\hat j + {F_3}\hat k\)

\( = \nabla \cdot F = \frac{{\partial {F_1}}}{{\partial x}} + \frac{{\partial {F_2}}}{{\partial y}} + \frac{{\partial {F_3}}}{{\partial z}}\)

Calculation:

Vector = -yi +xj

∴ Divergence \( = \frac{\partial }{{\partial x}}\left( { - y} \right) + \frac{\partial }{{\partial y}}\left( x \right) = 0 + 0 = 0\)

Divergence Question 3:

The divergence of vector xi +yj + zk is

  1. I + j + k
  2. 3
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 2 : 3

Divergence Question 3 Detailed Solution

Concept:

The Divergence theorem states that:

\(\mathop{{\int\!\!\!\ \!\!\int}\mkern-21mu \ \bigcirc} {D.ds = \iiint_V {\left( {∇ .D} \right)\;dV}}\)

where ∇.D is the divergence of the vector field D.

In Rectangular coordinates, the divergence is defined as:

\(\nabla \cdot \vec D = \left( {\frac{{\partial {D_x}}}{{\partial x}} + \frac{{\partial {D_y}}}{{\partial y}} + \frac{{\partial {D_z}}}{{\partial z}}} \right)\)

Analysis:

\(\nabla{\rm{\;}}\left( {{\rm{xi}} + {\rm{yj}} + {\rm{zk}}} \right) \)

\(= \frac{\partial }{{\partial {\rm{x}}}}\left( {\rm{x}} \right) + \frac{\partial }{{\partial {\rm{y}}}}\left( {\rm{y}} \right) + \frac{\partial }{{\partial {\rm{z}}}}\left( {\rm{z}} \right) = 3\)

26 June 1

  • Divergence operates on a vector field but results in a scalar.
  • Curl operates on a vector field and results in a vector field.
  • Gradient operates on a scalar but results in a vector field.
  • Divergence of curl, Curl of the gradient is always zero.
  • Thus, the gradient of curl gives the result of curl (which is a vector field) to the gradient to operate upon, which is a mathematically invalid expression.

Divergence Question 4:

The divergence of the vector field \(\vec V = {1 \over {{r^2}}}\ \hat { r } \) is ____________.

Answer (Detailed Solution Below) 0

Divergence Question 4 Detailed Solution

We have

\(\vec \nabla .\vec V = {1 \over {{r^2}}}{\partial \over {\partial r}}\left( {{r^2}.{V_r}} \right) + {1 \over {rsin\theta }}{\partial \over {\partial \theta }}\left( {sin\theta {V_\theta }} \right) + {1 \over {rsin\theta }}\left( {{{\partial {V_\phi }} \over {{\partial _\phi }}}} \right)\)

\(\vec \nabla .\vec V = {1 \over {{r^2}}} \hat{r} + 0. \hat {\theta} + 0.\hat {\phi} \)

Thus,

\(\vec \nabla .\vec V = {1 \over {{r^2}}}{\partial \over {\partial r}}\left( {{r^2}.{V_r}} \right) = {1 \over {{r^2}}}{\partial \over {\partial r}}\left( 1 \right) = 0\)

Divergence Question 5:

If div \(\vec V\) = 0, then \(\vec V\) is called

  1. rotational
  2. solenoidal
  3. irrotational
  4. none of the above

Answer (Detailed Solution Below)

Option 2 : solenoidal

Divergence Question 5 Detailed Solution

Explanation:

If a vector point function F(x, y, z) = F1i  + F2j + F3k is defined and differentiable at each point in some region of space then the divergence of F is denoted by div F or ∇.F and define as,

div F = ∇.F = \(\frac{{\delta {F_1}}}{{\delta x}} + \frac{{\delta {F_2}}}{{\delta y}} + \frac{{\delta {F_3}}}{{\delta z}}\) 

Solenoidal Vector: A vector function F is said to be a solenoidal vector if ∇.F = 0.

Additional Information

Irrotational Vector: ​A vector point function F is said to be a rotational vector if curl F = 0

curl F = ∇ × F = \(\left[ {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\delta }{{\delta x}}}&{\frac{\delta }{{\delta y}}}&{\frac{\delta }{{\delta z}}}\\ {{F_1}}&{{F_2}}&{{F_3}} \end{array}} \right]\)

Scalar potential vector: If for a given irrotational vector F there exist a scalar point function ϕ (x, y,z) such that F = ∇ ϕ then ϕ (x, y, z) is called a scalar potential function of F.

Divergence Question 6:

Find the value of a if the vector (ax2y + yz) I + (xy2 - xz2) J + (2xyz - 2x2y2) k is solenoidal.

Answer (Detailed Solution Below) -2

Divergence Question 6 Detailed Solution

Concept:

Divergence of a vector:

Divergence of any vector \(\vec{A}=F_1̂ i + F_2̂ j+ F_3̂ k\) is given by:

\(\nabla.\vec {A}=\left(̂{i}\frac{\partial}{\partial x}+̂{j}\frac{\partial}{\partial y}+̂{k}\frac{\partial}{\partial z}\right).(F_1̂ i + F_2̂ j+ F_3̂ k)\)

\(\nabla.\vec {A}=\left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)\)

Calculation:

Given:

A vector to the solenoidal, divergence of that vector should be zero.

F = (ax2y + yz)î + (xy2 - xz2)ĵ + (2xyz - 2x2y2)k̂ 

∇.F = 2axy + 2xy + 2xy = 0

⇒ 2a = -4 ⇒ a = -2

Divergence Question 7:

Divergence value of a function \({x^3}y\vec i - \left( {{z^2} - 2y} \right)\vec j + 5{y^2}z\vec k\) at x = 2, y = 3 and z = 4 is

Answer (Detailed Solution Below) 83

Divergence Question 7 Detailed Solution

Concept:

The divergence of any vector field  \(\vec A\) is defined as:

\(Div= \vec \nabla .\vec A\)

The nabla operator is defined as:

\(\vec \nabla ={\hat i\frac{\partial }{{\partial x}} + \hat j\frac{\partial }{{\partial y}}}+\hat k\frac{\partial }{\partial z}\)

Calculation:

\(f = {x^3}y\vec i - \left( {{z^2} - 2y} \right)\vec j + 5{y^2}z\vec k\)

\(Div\left( f \right) = \frac{\partial }{{\partial x}}\left( {{x^3}y} \right) + \frac{\partial }{{\partial y}}\left( { - \left( {{z^2} - 2y} \right)} \right) + \frac{\partial }{{\partial z}}\left( {5{y^2}z} \right)\)

= 3x2y + (+2) + (5y2)

= 3x2y + 5y2 + 2

At (2, 3, 4)

Div (f) = 3(2)2(3) + 5(3)2 + 2

∴ Div (f) = 36 + 45 + 2 = 83

Divergence Question 8:

What is the divergence of the vector field  \(\vec{f}\ =\ 6x^2\hat{i}\ +\ 3xy^2\hat{j}\ +\ xyz^3\hat{k}\)  at the point (2, 3, 4).

  1. 106
  2. 124
  3. 348
  4. 100

Answer (Detailed Solution Below)

Option 3 : 348

Divergence Question 8 Detailed Solution

Concept:

Divergence of the vector function:

The net outward flux from a volume element around a point is a measure of the divergence of the vector field at that point.

Divergence of a function \(\vec F = {F_1}\hat i + {F_2}\hat j + {F_3}\hat k\)

\( \nabla \cdot \vec F = \frac{{\partial {F_1}}}{{\partial x}} + \frac{{\partial {F_2}}}{{\partial y}} + \frac{{\partial {F_3}}}{{\partial z}}\)

Calculation:

Given that,

\(\vec{f}\ =\ 6x^2\hat{i}\ +\ 3xy^2\hat{j}\ +\ xyz^3\hat{k}\)

Therefore, the divergence of a given vector is

\( \nabla \cdot \vec f = \frac{{\partial {f_1}}}{{\partial x}} + \frac{{\partial {f_2}}}{{\partial y}} + \frac{{\partial {f_3}}}{{\partial z}}\)        -----(1)

Here,

f1 = 6x2, f2 = 3xy2, f3 = xyz3      

Therefore, from equation (1)

\( \nabla \cdot \vec f = \frac{{\partial {}}}{{\partial x}}6x^2 + \frac{{\partial {}}}{{\partial y}}3xy^2 + \frac{{\partial {}}}{{\partial z}}xyz^3\)

⇒ \( \nabla \cdot \vec f \) = 12x + 6xy + 3xyz2

Therefore, divergence at point (2, 3, 4)

\( \nabla \cdot \vec f \) = 12(2) + 6(2)(3) + 3(2)(3)(4)2

⇒ \( \nabla \cdot \vec f \)  = 24 + 36 + 288 = 348

Hence, option 3 is correct.

Additional Information

Gauss divergence theorem: 

It states that the surface integral of the normal component of a vector function \(\vec F\) taken over a closed surface ‘S’ is equal to the volume integral of the divergence of that vector function \(\vec F\) taken over a volume enclosed by the closed surface ‘S’.

\(\underset{S}{\mathop \iint }\,\vec{F}.\hat{n}ds=\iiint\limits_{V}{\nabla .\vec{F}dv}\)

Divergence Question 9:

If r̅ = x i̅ + y j̅ + z k̅ then the possible values of \({\nabla ^2}\left[ {\nabla \cdot \left( {\frac{{\bar r}}{{{r^2}}}} \right)} \right] = \)

  1. -2r-3
  2. -2r3
  3. 2r-4
  4. 2r-3

Answer (Detailed Solution Below)

Option :

Divergence Question 9 Detailed Solution

Explanation:

\(\nabla \cdot \left( {\phi \vec A} \right) = \left( {\nabla \phi } \right) \cdot \vec A + \phi \left( {\nabla \cdot \vec A} \right)\)

\(\nabla \cdot \left( {\frac{1}{{{r^2}}} \cdot \vec r} \right) = \left( {\nabla \frac{1}{{{r^2}}}} \right) \cdot \vec r + \frac{1}{{{r^2}}}\left( {\nabla \cdot \vec r} \right)\)

\(= \left[ {\frac{{ - 2\vec r}}{{{r^4}}}} \right] \cdot \vec r + \frac{3}{{{r^2}}}\;\;\;\;\;\;\;\;\;\;\;\left[ {\because \nabla \;\left( {f\left( r \right)} \right) = \frac{{f'\left( r \right)}}{r}\vec r} \right]\)

\( = \frac{{ - 2}}{{{r^2}}} + \frac{3}{{{r^2}}}\;\;\;\;\;\;\;\;\;\;\left\{ {\vec r \cdot \vec r = {r^2}} \right\}\)

\(= \frac{1}{{{r^2}}}\)

\({\nabla ^2}\left[ {\nabla \cdot \frac{{\vec r}}{{{r^2}}}} \right] = {\nabla ^2}\left[ {\frac{1}{{{r^2}}}} \right]\)

\( = \frac{6}{{{r^4}}} + \frac{2}{r}\left( {\frac{{ - 2}}{{{r^3}}}} \right)\)

\(\left[ {{\nabla ^2}\left\{ {f\left( r \right)} \right\} = r''\left( r \right) + \frac{2}{r}f'\left( r \right)} \right]\)

\(= \frac{6}{{{r^4}}} - \frac{4}{{{r^4}}}\)

\(= \frac{2}{{{r^4}}} = 2{r^{ - 4}}\)

Divergence Question 10:

Consider an incompressible flow velocity given as

\(\vec V = \left( {2x + 3y + 4z} \right)\hat i + \left( {5x + cy + 6z} \right)\hat j + \left( {8x + 9y} \right)\hat k\)

The value of constant C is

Answer (Detailed Solution Below) -2

Divergence Question 10 Detailed Solution

Calculation:

For an Incompressible flow, div \(\vec V = 0\)

\(div\;\left( {\vec V} \right) = \vec \nabla \cdot \vec V = \frac{\partial }{{\partial x}}\left( {2x + 3y + 4z} \right) + \frac{{\partial \left( {5x + cy + 6z} \right)}}{{\partial y}} + \frac{\partial }{{\partial z}}\left( {8x + 9y} \right){\rm{\;}} = {\rm{\;}}2{\rm{\;}} + {\rm{\;C}}\)

For incompressible flow, \(\vec \nabla \cdot \vec V = 0\)

⇒ 2 + C = 0 ⇒ C = -2

Get Free Access Now
Hot Links: teen patti classic teen patti gold apk download teen patti joy mod apk