Special Functions MCQ Quiz in मल्याळम - Objective Question with Answer for Special Functions - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 21, 2025

നേടുക Special Functions ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Special Functions MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Special Functions MCQ Objective Questions

Top Special Functions MCQ Objective Questions

Special Functions Question 1:

What is the minimum values of the function |x - 4| + 2?

  1. 1
  2. 2
  3. -2
  4. 0

Answer (Detailed Solution Below)

Option 2 : 2

Special Functions Question 1 Detailed Solution

Concept:

|x| ≥ 0 for every x ∈ R

Calculation:

Let f(x) = |x - 4| + 2

As we know that |x| ≥ 0 for every x ∈ R

∴ |x - 4| ≥ 0

The minimum value of function is attained when |x - 4| = 0

Hence, Minimum value of f(x) = 0 + 2 = 2 

Alternate Method

f(x) =  |x - 4| + 2

There is one critical point i.e. x = 4

f(4) = |4 - 4| + 2

= 0 + 2

= 2

Hence 2 is the minimum value of f(x).

Special Functions Question 2:

If log42=a then log22 is

  1. 1/2a
  2. 4a
  3. 1/a
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 1/2a

Special Functions Question 2 Detailed Solution

Concept:

Logarithmic formula:

  • logab=1logba
  • loga M + loga N = loga (MN)

Where a ≠ 1, a > 0 and b ≠ 1, b > 0 and M, N are arbitrary positive numbers and p is any real number.

 

Calculation:

Given: log42=a

To find: log22

Using property, logab=1logba

log42=1log24=1log2(2×2)

Using property, loga M + loga N = loga (MN)

a=1(log22 + log22)

a=12log22

2log22=1a

log22=12a

Special Functions Question 3:

If x = logc (ab), y = loga (bc), z = logb (ca), then which of the following is correct?

  1. xyz = 1
  2. x + y + z = 1
  3. (1 + x)-1 + (1 + y)-1 + (1 + z)-1 = 1
  4. (1 + x)-2 + (1 + y)-2 + (1 + z)-2 = 1

Answer (Detailed Solution Below)

Option 3 : (1 + x)-1 + (1 + y)-1 + (1 + z)-1 = 1

Special Functions Question 3 Detailed Solution

Concept:

If x = loga b then x = logbloga

log (mn) = log m + log n

Calculations:

Given, x = logc (ab), y = loga (bc), z = logb (ca),

Consider,x = logc (ab) 

By logarithm property, we have

x=log(ab)logcy=log(bc)logaand z=log(ca)logb

⇒ from this xyz1 and x+y+z1

Consider,

⇒1 + x = 1 + log(ab)logc

By usiing logarithm property  log (mn) = log m + log n, we have

⇒1 + x =  logc+log(ab)logc

⇒ 1+ x = logabclogc

Similarly, 1 + y = logabcloga and 1 + z = logabclogb

Consider, 11+x+11+y+11+z=logclogabc+logblogabc+logalogabc                                                     

logc+loga+logblogabc

logabclogabc

= 1

Special Functions Question 4:

Find the value of x for which log (x2 - 2x) = log (5x - 12)?

  1. 2 and 3
  2. 3 and 4
  3. 5 and 6
  4. 1 and 2

Answer (Detailed Solution Below)

Option 2 : 3 and 4

Special Functions Question 4 Detailed Solution

Concept:

Formulas and Properties of Logarithms:

  1. logaa=1
  2. loga(x.y)=logax+logay
  3. loga(xy)=logaxlogay
  4. loga(1x)=logax
  5. logaxp=plogax
  6. loga(x)=logb(x)logb(a)

Calculation:

Given: log (x2 - 2x) = log (5x - 12)

By applying antilog on both the sides we get,

10log (x2 - 2x) = 10log (5x - 12)

⇒ x2 - 2x = 5x - 12

⇒ x2 - 7x + 12 = 0

⇒ (x - 3) (x - 4) = 0

⇒ x = 3 and 4

Special Functions Question 5:

Calculate the value of x from log(324)log(18)=log(x).

  1. 10
  2. 100
  3. 0
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 100

Special Functions Question 5 Detailed Solution

Concept:

Formula of Logarithm:

ab=xlogax=b, here a ≠ 1 and a > 0 and x be any number.

Properties of Logarithms:

  1. logaa=1
  2. loga(x.y)=logax+logay
  3. loga(xy)=logaxlogay
  4. loga(1x)=logax
  5. logaxp=plogax
  6. loga(x)=logb(x)logb(a)

 

Calculation:

Given: log(324)log(18)=log(x)

As we know that, log(324)log(18)=log10(324)log10(18) and log(x)=log10(x)

Now, log10(324)log10(18)=log10(x)

Using the rule, ab=xlogax=b we have,

10log10(324)log10(18)=x

10log10(182)log10(18)=x

By the power rule we have,

102log10(18)log10(18)=x

⇒ x = 102

⇒ x = 100

Hence, the value of x is 100.

Special Functions Question 6:

If (0.2)x = 2 and log10 2 = 0.3010, the what is the value of x to the nearest tenth?

  1. - 10.0
  2. - 0.5
  3. - 0.4
  4. - 0.2

Answer (Detailed Solution Below)

Option 3 : - 0.4

Special Functions Question 6 Detailed Solution

Concept:

Logarithm properties

  1. Product rule: The log of a product equals the sum of two logs.

loga(mn)=logam+logan

  1. Quotient rule: The log of a quotient equals the difference of two logs.

logamn=logamlogan

  1. Power rule: In the log of a power the exponent becomes a coefficient.

logamn=nlogam

  1. Change of base rule

logmn=loganlogam

If m = n;
logmm=logamlogam=1 (Example, log10 10 = 1)

  1. logmn=1lognm

 

Calculation:

Given:

(0.2)x = 2

Taking log both sides,

log10 (0.2)x = log10 2

⇒ x log10 (2/10) = 0.3010

⇒ x (log10 2 - log10 10) =0.3010

⇒ x (0.3010 - 1) = 0.3010

⇒ x ( - 0.6990) = 0.3010

⇒ x = 0.3010/ ( - 0.6990)

∴ x = - 0.43

So, option 3 is correct.

Special Functions Question 7:

If log (x + 4) + log (x - 4) = 2 log 4 then x is equal to ?

  1. 2
  2. 4
  3. 42
  4. 32

Answer (Detailed Solution Below)

Option 3 : 42

Special Functions Question 7 Detailed Solution

Concept:

Logarithm properties:

Product rule: The log of a product equals the sum of two logs.

loga(mn)=logam+logan

Quotient rule: The log of a quotient equals the difference of two logs.

logamn=logamlogan

Power rule: In the log of power the exponent becomes a coefficient.

logamn=nlogam

 

Calculation:

Given: log (x + 4) + log (x - 4) = 2 log 4

⇒ log [(x + 4) (x - 4)] = 2 log 4        (∵ log m + log n = log mn)

⇒ log (x2 - 42) =  log 42                   (∵ n log m = log mn)

⇒ (x2 - 42) =  42

⇒ x2 = 32

∴ x = 32=42

 

Important Points

Logarithm properties:

Change of base rule:

logmn=loganlogam  and logmn=1lognm

If m = n;

logmm=logamlogam=1

Special Functions Question 8:

If 0 < a < 1, the value of log10 a is negative. This is justified by

  1. Negative power of 10 is less than 1
  2. Negative power of 10 is between 0 and 1
  3. Negative power of 10 is positive
  4. Negative power of 10 is negative

Answer (Detailed Solution Below)

Option 2 : Negative power of 10 is between 0 and 1

Special Functions Question 8 Detailed Solution

Concepts:

  • logey=xy=ex

 

Calculation:

Given: log10 a is negative.

⇒ log10 a < 0

Let log10 a = - b (Here b is positive)

⇒ a = 10-b

Given a lies between 0 to 1

⇒ 0 < a < 1

⇒ 0 < 10-b < 1

Hence it is negative power of 10 is between 0 and 1

∴ Option 2 is correct.

Special Functions Question 9:

If 2log10(x + 1) = log10(7x + 1), then find the non-zero value of ‘x’?

  1. 4
  2. 5
  3. 6
  4. 7

Answer (Detailed Solution Below)

Option 2 : 5

Special Functions Question 9 Detailed Solution

GIVEN:

2log10(x + 1) = log10(7x + 1)

CONCEPT:

Algebric and logarithmic concept

FORMULA USED:

alogb(x) = logbxa

CALCULATION:

Considering the given equation

2log10(x + 1) = log10(7x + 1)

⇒ log10(x + 1)2 = log10(7x + 1)

After comparing:

⇒ (x + 1)2 = (7x + 1)

⇒ x2 + 1 + 2x = 7x + 1

⇒ x2 – 5x = 0

⇒ x(x – 5) = 0

x = 0 and 5

∴ Non-zero value of ‘x’ = 5

Special Functions Question 10:

If 5x - 3 = 8, then what is x equal to?

  1. 31  log10 2
  2. 31 + log10 2
  3. 21  log10 2
  4. 51  log10 2

Answer (Detailed Solution Below)

Option 1 : 31  log10 2

Special Functions Question 10 Detailed Solution

Formulae Used:

log10 xm = m × log10

log10 (ab) = log10 a + log10 b 

log10 (a/b) = log10 a – log10 b

Calculation:

5x - 3 = 8

5x - 3 = 23

Taking log10 on both sides,

(x – 3)log10 5 = 3log10 2

⇒ x – 3 =  3log10 2/log10 5

⇒ x = (3log10 2/log10 5) + 3

⇒ x = 3[(log10 2/log10 5) + 1]

⇒ x = 3[(log10 2 + log10 5)/log10 5]

⇒ x = 3{[log10 (2 × 5)]/log10 5}

⇒ x = 3(1/log10 5)

⇒ x = 3/log10 5

⇒ x = 3/[log10 (10/2)]

⇒ x = 3/(log10 10 – log10 2)

∴ x = 3/(1 – log10 2)

Get Free Access Now
Hot Links: teen patti app online teen patti real money teen patti stars teen patti 51 bonus