Second Order Derivatives MCQ Quiz in मल्याळम - Objective Question with Answer for Second Order Derivatives - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 15, 2025

നേടുക Second Order Derivatives ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Second Order Derivatives MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Second Order Derivatives MCQ Objective Questions

Top Second Order Derivatives MCQ Objective Questions

Second Order Derivatives Question 1:

If f(x) = ecos x, then find the f"(x)?

  1. ecos x(sinx - cos x)
  2. ecosx.sin x (sin x - 1)
  3. ecosx.cos x (cos x - 1)
  4. ecosx.sin x (cos x + 1)

Answer (Detailed Solution Below)

Option 1 : ecos x(sinx - cos x)

Second Order Derivatives Question 1 Detailed Solution

Calculations:

Given, f(x) = ecos x

Taking derivative with respect to x on both side, we get

⇒ f'(x) = ddx(ecos x)

⇒ f'(x) = ecos x ddx(cosx)

⇒ f'(x) = ecos x (sinx)

⇒ f'(x) = (sinx)ecos x                                     (∴ ecosx = f(x))

⇒ f''(x) = ddx(- sin x)f(x)

⇒ f''(x) = - sin x.f'(x) + f(x)(- cos x)

⇒ f''(x) = - sin x.f'(x) - f(x).cos x

Putting the value of f(x) and f'(x)

⇒ f''(x) = sin2 x ecos x - cos x ecos x

⇒ f''(x) = ecos x(sin2 x - cos x)

Second Order Derivatives Question 2:

If y = e2x then d2ydx2 is equal to ?

  1. y
  2. 2y
  3. 4y
  4. 6y

Answer (Detailed Solution Below)

Option 3 : 4y

Second Order Derivatives Question 2 Detailed Solution

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: ddx[f(g(x))]=f(g(x))g(x)
  • Product Rule: ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)

Formula:

dexdx=ex

Calculation:

Let y = e2x                          ..... (1)

Differentiating with respect to x, we get

dydx=ddx(e2x)

dydx  = 2e2x

Again, differentiating with respect to x, we get

d2ydx2=4e2x

From equation (1), we get

d2ydx2=4y

Second Order Derivatives Question 3:

If y = e5x then d2ydx2 =

  1. 25y
  2. 15y
  3. 10y
  4. 5y

Answer (Detailed Solution Below)

Option 1 : 25y

Second Order Derivatives Question 3 Detailed Solution

Concept:

Second-order Derivative.

d2f(x)dx2= ddx[ddxf(x)]

ddxef(x)=ef(x)f(x)

Calculations:

y = e5x 

Differentiating w.r. to x on both side, we get

dydx=5e5x

Again Differentiating w.r. to x on both sides, we get

d2ydx2=5×5e5x

d2ydx2=25y

Second Order Derivatives Question 4:

If x = a cos t, y = b sin t, then d2ydx2 is:

  1. b4a2y3
  2. b4a2x3
  3. bay4
  4. a4bx3

Answer (Detailed Solution Below)

Option 1 : b4a2y3

Second Order Derivatives Question 4 Detailed Solution

Concept:

Chain Rule of Derivatives:

  • ddx f[g(x)]=dd g(x)f[g(x)]×ddxg(x)
  • dydx=dydu×dudx

 

Derivatives of Trigonometric Functions:

  • ddxsinx=cosx             ddxcosx=sinxddxtanx=sec2x           ddxcotx=csc2xddxsecx=tanxsecx    ddxcscx=cotxcscx

 

Calculation:

x = a cos t

⇒ dxdt=addtcost=asint

 

y = b sin t

⇒ dydt=bddtsint=bcost

 

Now, dydx=dydt×dtdx

bcost×1asint

ba×cott

 

And, d2ydx2=ddx(dydx)

(ba)(ddxcott)

(ba)×(ddtcott)×dtdx

(ba)×(csc2t)×1asint

ba2×1sin3t

ba2×1(yb)3

ba2×(by)3

b4a2y3.

Second Order Derivatives Question 5:

Find the double derivative of x3 - x2 + 1.

  1. 6x + 2
  2. 6x
  3. 6x + 3
  4. 6x - 2

Answer (Detailed Solution Below)

Option 4 : 6x - 2

Second Order Derivatives Question 5 Detailed Solution

Concept:

Differentiation: ddxxn=nxn1.

Calculation:

Let y = x3 - x2 + 1.

Differentiating w.r.t. x, we get:

y' = 3x2 - 2x.

Differentiating again (double derivative) w.r.t. x, we get:

y'' = 6x - 2.

Second Order Derivatives Question 6:

If y = ekx then d2ydx2 =

  1. y
  2. ky
  3. k2y
  4. ekx

Answer (Detailed Solution Below)

Option 3 : k2y

Second Order Derivatives Question 6 Detailed Solution

Concept:

Second-order Derivative.

d2f(x)dx2= ddx[ddxf(x)]

ddxef(x)=ef(x)f(x)

 

Calculations:

Let y = ekx 

Differentiating w.r. to x on both side, we get

dydx=kekx

Again Differentiating w.r. to x on both sides, we get

d2ydx2=k2ekx

d2ydx2=k2y

Hence, If y = ekx then d2ydx2=k2y 

Second Order Derivatives Question 7:

Find d2sin2xdx2

  1. 4sin 2x
  2. 2sin 2x
  3. -4sin 2x
  4. None of these

Answer (Detailed Solution Below)

Option 3 : -4sin 2x

Second Order Derivatives Question 7 Detailed Solution

Concept:

Second-order Derivative.

d2f(x)dx2= ddx[ddxf(x)]

ddxcosx=sinx

ddxsinx=cosx

 

Calculations:

 d2sin2xdx2

ddx(ddxsin2x)

ddx(2cos2x)

2ddx(cos2x)

2(2sin2x)

= -4sin 2x

Hence, d2sin2xdx2 = - 4sin 2x

Second Order Derivatives Question 8:

If y = 5 cos x - 3 sin x , then d2ydx2 is equal to :

  1. -y
  2. y
  3. 25y
  4. 9y

Answer (Detailed Solution Below)

Option 1 : -y

Second Order Derivatives Question 8 Detailed Solution

Calculation:

Given:

y = 5 cos x − 3 sin x 

Differentiating both sides w.r.t x

dydx= −5 sin x − 3 cos x 

Again differentiating both sides w.r.t x

 d2ydx2 = −5 cos x + 3 sin x

= −y

Second Order Derivatives Question 9:

If y = x3 - 6x2 + 2 + sin x then d2ydx2 =

  1. 6x - 12 - sin x
  2. 6x + 12 - sin x
  3. 6x + 12 + sin x
  4. 6x - 12 + sin x

Answer (Detailed Solution Below)

Option 1 : 6x - 12 - sin x

Second Order Derivatives Question 9 Detailed Solution

Concept:

Second-order Derivative.

d2f(x)dx2= ddx[ddxf(x)]

ddxef(x)=ef(x)f(x)

Calculations:

y = x3 - 6x2​ + 2 + sin x

Differentiating w.r. to x on both side, we get

dydx = ( 3 x2) - (6 × 2 x) + 0 + cos x

⇒ 3x2 - 12x + cos x

Again Differentiating w.r. to x on both sides, we get 

d2ydx2 = (3 × 2 x) - 12 - sin x

d2ydx2=6x12sinx

Second Order Derivatives Question 10:

If y = sin (ax + b), then what is d2ydx2 at x=ba, where a, b are constants and a ≠ 0?

  1. 0
  2. -1
  3. sin (a - b)
  4. sin (a + b)

Answer (Detailed Solution Below)

Option 1 : 0

Second Order Derivatives Question 10 Detailed Solution

Concept: 

If y = f(x) and x = f(t)  then by chain Rule dydx=dydt.dtdx

Calculations:

Given, y = sin (ax + b)

Take derivative on both sides,we get 

dydx=ddx(sin(ax+b)).ddx(ax+b)

dydx=cos(ax+b).a

Again take derivative on both sides, we get

ddx.dydx=ddx[a.cos(ax+b)]

d2ydx2=a2sin(ax+b)

Now, to find  d2ydx2 at x=ba, put x=bain above equation.
d2ydx2=a2sin(a×ba+b)
d2ydx2=a2sin(0)
d2ydx2=0

  d2ydx2 at x=ba  is 0.
 
Get Free Access Now
Hot Links: teen patti cash dhani teen patti teen patti cash game