Second Order Derivatives MCQ Quiz - Objective Question with Answer for Second Order Derivatives - Download Free PDF

Last updated on Jul 8, 2025

Latest Second Order Derivatives MCQ Objective Questions

Second Order Derivatives Question 1:

Let y(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) (1 + x16).

Then y' - y" at x = -1 is equal to

  1. 976 
  2. 464 
  3. 496 
  4. 944

Answer (Detailed Solution Below)

Option 3 : 496 

Second Order Derivatives Question 1 Detailed Solution

Calculation:

⇒ y=1x321xyxy=1x32

⇒ y' - xy' - y = -32x31

⇒ y" - xy" - y' - y' = -(32)(31)x30

at x = – 1 ⇒ y' - y" = 496

Hence, the correct answer is Option 3. 

Second Order Derivatives Question 2:

If y(x)=|sinxcosxsinx+cosx+1272827111|,xR, then d2ydx2+y is equal to

  1. -1
  2. 28
  3. 27
  4. 1

Answer (Detailed Solution Below)

Option 1 : -1

Second Order Derivatives Question 2 Detailed Solution

Calculation: 

Applying C3 → C3 -C1

[y(x)=|sinxcosx1+cosxsinx272827271111|=|sinxcosx1+cosxsinx27280110|

y(x)=(sinx0cosx0+(1+cosxsinx)(2728))

y(x)=(1+cosxsinx)(1)=1cosx+sinx

dydx=(sinx)+cosx=sinx+cosx

d2ydx2=cosxsinx

d2ydx2+y=(cosxsinx)+(1cosx+sinx)=1

Hence, the correct answer is Option 1.

Second Order Derivatives Question 3:

Find d2logxdx2

  1. 1x2
  2. 1x2
  3. 1x
  4. 1x3
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 1x2

Second Order Derivatives Question 3 Detailed Solution

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: ddx[f(g(x))]=f(g(x))g(x)
  • Product Rule: ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)

 

Formulas:

dlogxdx=1x

 

Calculation:

d2logxdx2

ddx×dlogxdx

d(1x)dx

1x2

Second Order Derivatives Question 4:

If y = 100e2x - 200e-2x and d2ydx2 = ay then a = ________.

  1. 4
  2. -4
  3. 2
  4. 0

Answer (Detailed Solution Below)

Option 1 : 4

Second Order Derivatives Question 4 Detailed Solution

Calculation:

 y = 100e2x - 200e-2x

Differentiate y with respect to x:

dydx=200e2x+400e2x

Differentiate again with respect to x:

d2ydx2=400e2x800e2x

Factor out 4:

d2ydx2=4(100e2x200e2x)

d2ydx2=4y

Comparing with d2ydx2=ay, we get a = 4.

Hence option 1 is correct

Second Order Derivatives Question 5:

If y=sinax+cosbx, then y+b2y=

  1. (b2a2)sinax
  2. (b2a2)cosbx
  3. (a2b2)tanax
  4. (b2a2)cotbx

Answer (Detailed Solution Below)

Option 1 : (b2a2)sinax

Second Order Derivatives Question 5 Detailed Solution

Formula Used:

Chain rule for differentiation

Calculation:

Given:

y=sinax+cosbx

Differentiating both sides w.r.t. x, we get

y=ddx(sinax+cosbx)=acosaxbsinbx

Differentiating again w.r.t. x, we get

y=ddx(acosaxbsinbx)=a2sinaxb2cosbx

Now, substituting the values of y and y'' in the expression y+b2y, we get

y+b2y=(a2sinaxb2cosbx)+b2(sinax+cosbx)

a2sinaxb2cosbx+b2sinax+b2cosbx

(b2a2)sinax

y+b2y=(b2a2)sinax

Hence option 1 is correct

Top Second Order Derivatives MCQ Objective Questions

Find d2cot1xdx2

  1. 2x(1+x2)2
  2. 2(1+x2)2
  3. 1(1+x2)2
  4. 2x(1+x2)2

Answer (Detailed Solution Below)

Option 4 : 2x(1+x2)2

Second Order Derivatives Question 6 Detailed Solution

Download Solution PDF

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Product Rule: ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)
  • Division rule: ddxuv=v×uu×vv2

 

Formulas:

dcot1xdx=11+x2

Calculation:

d2cot1xdx2

ddx×dcot1xdx

ddx(11+x2)

ddx(11+x2)

⇒ [(1+x2)×01×2x(1+x2)2]

[2x(1+x2)2]

2x(1+x2)2

If y = p cos 2x + q sin 2x, then d2ydx2 is equal to?

  1. -2y
  2. -4y
  3. 2y
  4. 4y

Answer (Detailed Solution Below)

Option 2 : -4y

Second Order Derivatives Question 7 Detailed Solution

Download Solution PDF

Concept:

  • ddx{f(x)±g(x)}=d{f(x)}dx±d{g(x)}dx
  • d(sinx)dx=cosx
  • d(cosx)dx=sinx

 

Calculation:

Given: y = p cos 2x + q sin 2x                    .... (1)

Differentiating with respect to x, we get

As we know that, ddx{f(x)±g(x)}=d{f(x)}dx±d{g(x)}dx

dydx=d(pcos2x)dx+d(qsin2x)dx

dydx=2psin2x+2qcos2x

Again, differentiating with respect to x, we get

d2ydx2=2p×d(sin2x)dx+2q×d(cos2x)dx

d2ydx2=4pcos2x4qsin2x=4(pcos2x+qsin2x)

From equation (1), we get

d2ydx2=4y

If x = 1  t1 + t and y = 2t1 + t, then find the value of d2ydx2.

  1. 1y
  2. 1y
  3. 1y3
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Second Order Derivatives Question 8 Detailed Solution

Download Solution PDF

Concept:

Chain Rule of Derivatives:

  • ddxf(g(x))=dd g(x)f(g(x))×ddxg(x).
  • dydx=dydu×dudx.


Product Rule of Derivatives:

  • ddx[f(x)×g(x)]=f(x)×ddxg(x)+ddxf(x)×g(x).


Calculation:

We have x = 1  t1 + t and y = 2t1 + t.

We observe that x + y = (1  t1 + t)+(2t1 + t)=1 + t1 + t = 1.

Differentiating w.r.t. x, we get:

1 + dydx = 0

⇒ dydx = -1

Differentiating again w.r.t. x, we get:

d2ydx2=0.

Find x2y2 + xy1, if y = sin (log x) ?

  1. y
  2. -y
  3. xy
  4. -xy

Answer (Detailed Solution Below)

Option 2 : -y

Second Order Derivatives Question 9 Detailed Solution

Download Solution PDF

CONCEPT:

d(sinx)dx=cosx

d(cosx)dx=sinx

d(lnx)dx=1x,forx>0

CALCULATION:

Given: y = sin (log x)

First let's find out y1

As we know that, d(sinx)dx=cosx and d(lnx)dx=1x,forx>0

⇒ y1=dydx=cos (logx)x

Now, again by differentiating the above equation with respect to x we get,

As we know that, d(cosx)dx=sinx

⇒ y2=d2ydx2=sin (log x)  cos (log x)x2

Now, x2y2 + xy1 = -y

Hence, correct option is 2.

Find d2(x20)dx2

  1. 370x187 
  2. 360x18 
  3. 380x18 
  4. 340x18 

Answer (Detailed Solution Below)

Option 3 : 380x18 

Second Order Derivatives Question 10 Detailed Solution

Download Solution PDF

Concept:

dxndx=nxn1

 

Calculation:

To Find: d2(x20)dx2

d2(x20)dx2=ddx(dx20dx)

=ddx(20x19)=20dx19dx

= 20 × 19 × x18

= 380x18 

Find d2dx2(tan1x)

  1. 2x(1+x2)2
  2. 2(1+x2)2
  3. 1(1+x2)2
  4. 2x(1+x2)2

Answer (Detailed Solution Below)

Option 1 : 2x(1+x2)2

Second Order Derivatives Question 11 Detailed Solution

Download Solution PDF

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: ddx[f(g(x))]=f(g(x))g(x)
  • Product Rule: ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)


Formulas:

ddx(tan1x)=11+x2

Calculation:

d2dx2(tan1x)

ddx×ddx(tan1x)

d(11+x2)dx

1(1+x2)2×(0+2x)

2x(1+x2)2

What is the second derivative of tan 2x?

  1. 8 tan2 2x sec2 2x
  2. 8 tan 2x sec 2x
  3. 8 tan 2x sec2 2x
  4. None of these.

Answer (Detailed Solution Below)

Option 3 : 8 tan 2x sec2 2x

Second Order Derivatives Question 12 Detailed Solution

Download Solution PDF

Concept:

Chain Rule of Derivatives:

  • ddxf(g(x))=dd g(x)f(g(x))×ddxg(x).
  • dydx=dydu×dudx.

 

Derivatives of Trigonometric Functions:

ddxsinx=cosx             ddxcosx=sinxddxtanx=sec2x           ddxcotx=csc2xddxsecx=tanxsecx    ddxcscx=cotxcscx

 

Calculation:

Using the chain rule of derivatives, we get:

dtan2xdx=dtan2xd(2x)×d(2x)dx = 2 sec2 2x

Again differentiation in respect to x, we get

d2tan2xdx2=ddx×dtan2xdx

2dsec22xdx

=2 (2 sec 2x)(tan 2x sec 2x)(2)

= 8 tan 2x sec2 2x

Find d2tanxdx2

  1. sec2 x
  2. 2sec2 x tan x
  3. sec x tan x
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 2sec2 x tan x

Second Order Derivatives Question 13 Detailed Solution

Download Solution PDF

Concept:

 

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: ddx[f(g(x))]=f(g(x))g(x)
  • Product Rule: ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)


Formulas:

dtanxdx=sec2x

dsecxdx=secxtanx

dxndx=nxn1

Calculation:

We have to find the value of d2tanxdx2

d2tanxdx2=ddx(dtanxdx)

=ddx(sec2x)

Apply chain rule, we get

=dsec2xdsecx×dsecxdx

= 2sec x . sec x tan x

= 2sec2 x tan x

Find d2(x10)dx2

  1. 10(x9)
  2. 90(x8)
  3. 90(x9)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 90(x8)

Second Order Derivatives Question 14 Detailed Solution

Download Solution PDF

Concept:

dxndx=nxn1

Calculation:

To Find: d2(x10)dx2

d2(x10)dx2=ddx(dx10dx)

=ddx(10x9)=10dx9dx

= 10 × 9 × x8

= 90(x8)

If y = 5 cos x - 3 sin x then d2ydx2=?

  1. y
  2. 2y
  3. y/2
  4. -y

Answer (Detailed Solution Below)

Option 4 : -y

Second Order Derivatives Question 15 Detailed Solution

Download Solution PDF

CONCEPT:

  • d(sinx)dx=cosx
  • d(cosx)dx=sinx

CALCULATION:

Given: y = 5 cos x - 3 sin x

First let's find out dy/dx

As we know that, d(sinx)dx=cosx and d(cosx)dx=sinx

⇒ dy/dx = - 5 sin x - 3 cos x

Now, again by differentiating the above equation with respect to x we get,

d2ydx2=5 cos x+3 sin x=y

Hence, correct option is 4.

Get Free Access Now
Hot Links: teen patti app teen patti - 3patti cards game downloadable content teen patti noble teen patti all