Shortest Distance MCQ Quiz - Objective Question with Answer for Shortest Distance - Download Free PDF

Last updated on Jul 16, 2025

Latest Shortest Distance MCQ Objective Questions

Shortest Distance Question 1:

If the shortest distance between the line joining the points(1, 2, 3) and (2, 3, 4), and the line \(\rm \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-2}{0}\) is α, then 28α2 is equal to____. 

Answer (Detailed Solution Below) 18

Shortest Distance Question 1 Detailed Solution

Calculation: 

\(\rm \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+\hat{j}+\hat{k}) \quad \vec{r}=\vec{a}+\lambda \vec{p} \)

⇒ \(\rm \vec{r}=(+\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}-\hat{j}) \quad \vec{r}=\vec{b}+\mu \vec{q} \)

⇒ \(\rm \vec{p} × \vec{q}=\left|\begin{array}{ccc} \rm \hat{i} &\rm \hat{j} &\rm \hat{k} \\ 1 & 1 & 1 \\ 2 & -1 & 0 \end{array}\right|=\hat{i}+2 \hat{j}-3 \hat{k} \)

⇒ \(\rm d=\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} × \vec{q})}{|\vec{p} × \vec{q}|}\right| \)

⇒ \(\rm d=\left|\frac{(-3 \hat{j}-\hat{k}) \cdot(\hat{i}+2 \hat{j}-3 \hat{k})}{\sqrt{14}}\right| \)

\(=\left|\frac{-6+3}{\sqrt{14}}\right|=\frac{3}{\sqrt{14}} \)

⇒ \(α=\frac{3}{\sqrt{14}}\)

Now, 28α2 = 28× \(\frac{9}{14} = 18\)

Hence, the correct answer is 18. 

Shortest Distance Question 2:

The shortest distance between the lines x + 1 = 2y = -12z and x = y + 2 = 6z – 6 is 

  1. 2
  2. 3
  3. \(\frac{5}{2}\)
  4. \(\frac{3}{2}\)

Answer (Detailed Solution Below)

Option 1 : 2

Shortest Distance Question 2 Detailed Solution

Calculation: 

\(\rm \frac{x+1}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{\frac{-1}{12}}\) and \(\rm \frac{x}{1}=\frac{y+2}{1}=\frac{z-1}{\frac{1}{6}} \)

\(\rm \Rightarrow \text { Shortest distance }=\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \)

\(\rm \text { S.D. }=(-\hat{i}+2 \hat{j}-\hat{k}) \cdot \frac{(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\)

\(\left\{\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}} \equiv\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & \frac{1}{2} & \frac{-1}{12} \\ 1 & 1 & \frac{1}{6} \end{array}\right|=\frac{1}{6} \hat{\mathrm{i}}-\frac{1}{4} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}} \text { or } 2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}\right\}\)

\(\rm \text { S.D. }=\frac{(-\hat{i}+2 \hat{j}-\hat{k}) \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})}{\sqrt{2^{2}+3^{2}+6^{2}}}=\left|\frac{-14}{7}\right|=2\)

Hence, the correct answer is Option 1.

Shortest Distance Question 3:

Shortest distance between the lines 

\(\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5} \) and \( \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}\) is

  1. 2√3 
  2. 4√3 
  3. 3√3 
  4. 5√3 

Answer (Detailed Solution Below)

Option 2 : 4√3 

Shortest Distance Question 3 Detailed Solution

Calculation: 

\(\rm \frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5} \quad \vec{a}=\hat{i}-8 \hat{j}+4 \hat{k}\)

\(\rm \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3} \quad \vec{b}=\hat{i}+2 \hat{j}+6 \hat{k}\)

⇒ \(\overrightarrow{\mathrm{p}}=2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{q}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}\)

⇒ \(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{array}\right|\)

\(\hat{\mathrm{i}}(16)-\hat{\mathrm{j}}(-16)+\hat{\mathrm{k}}(16)\)

\(16(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})\)

⇒ d = \(\left|\frac{(\mathrm{a}-\mathrm{b}) \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}\right|=\left|\frac{(-10 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot 16(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})}{16 \sqrt{3}}\right|\)

\(\left|\frac{-12}{\sqrt{3}}\right|=4 \sqrt{3}\)

Hence, the correct answer is Option 2.

Shortest Distance Question 4:

Line L1 passes through the point (1, 2, 3) and is parallel to z-axis. Line L2 passes through the point (λ , 5, 6) and is parallel to y-axis. Let for λ = λ1 , λ ,  λ21 , the shortest distance between the two lines be 3. Then the square of the distance of the point (λ1, λ2, 7) from the line L1 is  

  1. 40
  2. 32
  3. 25
  4. 37

Answer (Detailed Solution Below)

Option 3 : 25

Shortest Distance Question 4 Detailed Solution

Calculation:

We have two Lines

⇒ \(L_1: \frac{x-1}{0} = \frac{y-2}{0} = \frac{z-3}{1}, \qquad\)

⇒  \(L_2: \frac{x-\lambda}{0} = \frac{y-5}{1} = \frac{z-6}{0}.\)

To find their shortest distance, form the determinant

⇒ \(\det \begin{pmatrix} \lambda-1 & 3 & 3\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix} = (\lambda-1)\det\!\begin{pmatrix}0&1\\1&0\end{pmatrix} -3\det\!\begin{pmatrix}0&1\\0&0\end{pmatrix} +3\det\!\begin{pmatrix}0&0\\0&1\end{pmatrix} \) 

\(= -(\lambda-1). \)

⇒ \(\mathbf{d}_1\times\mathbf{d}_2 = \det \begin{pmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ 0&0&1\\ 0&1&0 \end{pmatrix} = -\,\mathbf{i}, \quad \bigl\|-\mathbf{i}\bigr\| = 1.\)

\(SD = \bigl|-(\lambda-1)\bigr| = |\lambda-1| = 3 \quad\Longrightarrow\quad \lambda = 1\pm 3 \quad\Longrightarrow\quad \lambda = 4 \text{ or } -2. \)

Foot of the perpendicular from P  to L1

Take \(P(\lambda_1,\lambda_2,7) = (4,-2,7)\)A general point on L1 ay be written as Q ( \((1,2,\,3+t).\)

Then, \(\overrightarrow{PQ} = (1-4,\;2-(-2),\;(3+t)-7) = (-3,\,4,\,t-4).\)

Perpendicularity to L1 direction d1 = (0, 0, 1) gives 

⇒ \(\overrightarrow{PQ}\cdot\mathbf{d}_1 = 0 \;\Longrightarrow\; (-3,4,t-4)\cdot(0,0,1)=0 \;\Longrightarrow\; t-4=0 \;\Longrightarrow\; t=4.\)

Thus, \(Q = (1,2,\,3+4) = (1,2,7).\)

⇒ \(PQ^2 = \|P-Q\|^2 = (4-1)^2 + (-2-2)^2 + (7-7)^2 = 3^2 + (-4)^2 + 0^2 \)

\(= 9 + 16 = 25. \)

Hence, the correct answer is Option 3.

Shortest Distance Question 5:

If the square of the shortest distance between the lines \(\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}\) and \(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}\) is \(\frac{\mathrm{m}}{\mathrm{n}}\), where m, n are coprime numbers, then m + n is equal to:

  1. 6
  2. 9
  3. 21
  4. 14

Answer (Detailed Solution Below)

Option 2 : 9

Shortest Distance Question 5 Detailed Solution

Calculation

\(\vec{a}=(2,1,-3)\)

\(\overrightarrow{\mathrm{b}}=(-1,-3,-5)\)

\(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{array}\right|\)

\(2 \hat{i}-\hat{\mathrm{j}}\)

\(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}=-3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}\)

\(S_{d}=\frac{|(\vec{b}-\vec{a}) \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})|}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}\)

\(\frac{2}{\sqrt{5}}\)

\(\left(\mathrm{S}_{\mathrm{d}}\right)^{2}=\frac{4}{5}\)

m = 4, n = 5 ⇒ m + n = 9 

Hence option 2 is correct

Top Shortest Distance MCQ Objective Questions

Find the magnitude of the shortest distance between the lines \(\frac{x-0}{2} = \frac{y-0}{-3}=\frac {z-0}{1} \) and \(\frac{x-2}{3} = \frac{y-1}{-5}=\frac {z+2}{2} \).

  1. \(\frac{1}{\sqrt3} \)
  2. \(\frac{2}{\sqrt3} \)
  3. \(\frac{1}{\sqrt5} \)
  4. \(\frac{1}{\sqrt7} \)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{\sqrt3} \)

Shortest Distance Question 6 Detailed Solution

Download Solution PDF

Concept: 

The magnitude of the shortest distance between the lines \( \vec{r_1} = \vec a_1 + \lambda \vec b_1\) and \(\vec{r_2} = \vec a_2 + \mu\vec b_2\) is 

\(d = \left | \frac{(\vec b_1\times\vec b_2).(\vec a_2 - \vec a_1)}{|\vec b_1\times\vec b_2|} \right|\)

Given:  

The lines \(\frac{x-0}{2} = \frac{y-0}{-3}=\frac {z-0}{1} \) and \(\frac{x-2}{3} = \frac{y-1}{-5}=\frac {z+2}{2} \).

Rewriting the given equations,

\( \vec{r_1} = \lambda(2\vec i-3\vec j+\vec k) \) and \( \vec{r_2} = (2\vec i+\vec j-2\vec k) + \mu(3\vec i-5\vec j+2\vec k) \)

\(\vec a_1=0\) ,  \(\vec b_1=2\vec i-3\vec j+\vec k\) and  \(\vec a_2=2\vec i+\vec j-2\vec k\),  \(\vec b_2=3\vec i-5\vec j+2\vec k\)

Therefore, the magnitude of the shortest distance between the given lines is

\(d = \left | \frac{(\vec b_1\times\vec b_2).(\vec a_2 - \vec a_1)}{|\vec b_1\times\vec b_2|} \right|\)

\(d = \left | \frac{[(2\vec i-3\vec j+\vec k)\times(3\vec i-5\vec j+2\vec k)].[(2\vec i+\vec j-2\vec k)-0]}{|(2\vec i-3\vec j+\vec k)\times(3\vec i-5\vec j+2\vec k)|} \right|\)

\(d = \left | \frac{(-\vec i-\vec j-\vec k).(2\vec i+\vec j-2\vec k)]}{|-\vec i-\vec j-\vec k|} \right|\)

\(d = \frac{1}{\sqrt{3}}\)

Therefore, the magnitude of the shortest distance between the given lines is \(\frac{1}{\sqrt3}\).

Let L1 and L2 be two parallel lines with the equations \(\rm \vec{r}=\vec{a}_1 +\lambda \vec{b}\) and \(\rm r=\vec{a}_2 + \mu\vec{b}\) respectively. The shortest distance between them is:

  1. \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
  2. \(\rm d=\left|\dfrac{\vec{b}\cdot (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
  3. \(\rm d=\left|\dfrac{\vec{a}_1\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
  4. \(\rm d=\left|\dfrac{\vec{a}_2\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)

Answer (Detailed Solution Below)

Option 1 : \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)

Shortest Distance Question 7 Detailed Solution

Download Solution PDF

Concept:

  • If two lines are parallel, then the distance between them is fixed.
  • The distance between two parallel lines \(\rm \vec{r}=\vec{a}_1 +\lambda \vec{b}\) and \(\rm r=\vec{a}_2 + \mu\vec{b}\) is given by the formula: \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\).

 

Calculation:

Using the formula for the distance between two parallel lines, we can say that the distance is \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\).

Find the shortest distance between the lines \(\frac{{x - 8}}{3} = \frac{{y + 9}}{{ - 16}} = \frac{{z - 10}}{7}\;\;and\;\frac{{x - 15}}{3} = \frac{{y - 29}}{8} = \frac{{z - 5}}{{ - 5}}\) ?

  1. 16
  2. 14
  3. 15
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 14

Shortest Distance Question 8 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: Equation of lines is \(\frac{{x - 8}}{3} = \frac{{y + 9}}{{ - 16}} = \frac{{z - 10}}{7}\;\;and\;\frac{{x - 15}}{3} = \frac{{y - 29}}{8} = \frac{{z - 5}}{{ - 5}}\)

By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get

⇒ x1 = 8, y1 = - 9, z1 = 10, a1 = 3, b1 = -16 and c1 = 7

Similarly, x2 = 15, y2 = 29, z2 = 5, a2 = 3, b2 = 8 and c2 = -5

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 7&{38}&{ - 5}\\ 3&{ - 16}&7\\ 3&8&{ - 5} \end{array}} \right|\)

As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

⇒ SD = 14 units

Hence, option B is the correct answer.

Find the shortest distance between the lines whose vector equations are \(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) and \(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\)

  1. 2.4
  2. 2
  3. 1.4
  4. 1.8
  5. 0

Answer (Detailed Solution Below)

Option 1 : 2.4

Shortest Distance Question 9 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)

Calculation:

L1\(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+4\hat{k}+s(3 \hat{i}+4\hat{k})\).

L2\(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+t(3 \hat{i}+4\hat{k})\).

Here, we see both lines are parallel and \(\vec{a_{1}}=2\hat{i}-3\hat{j}+4\hat{k}\) , \(\vec{a_{2}}= 2\hat{i}-3\hat{j}\) and \(\vec{b}= 3\hat{i}+4\hat{k}\).

\(\therefore \) The shortest distance between parallel lines L1 and L2

\(d= \left | \frac{(3\hat{i}+4\hat{k})\times [(2\hat{i}-3\hat{j})-(2\hat{i}-3\hat{j}+4\hat{k})]}{|3\hat{i}+4\hat{k}|} \right | \)

⇒ \(d= \left | \frac{(3\hat{i}+4\hat{k})\times (-4\hat{k})}{\sqrt{9+16}} \right | \)

⇒ \(d= \left | \frac{12\hat{j}}{5} \right | \) ⇒ \(d= \frac{12}{5} =2.4\) unit.

Hence, option 1 is correct.

Find the shortest distance between the lines whose vector equations are \(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) and \(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\)

  1. 2.4
  2. 2
  3. 1.4
  4. 0

Answer (Detailed Solution Below)

Option 1 : 2.4

Shortest Distance Question 10 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)

Calculation:

L1\(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+4\hat{k}+s(3 \hat{i}+4\hat{k})\).

L2\(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+t(3 \hat{i}+4\hat{k})\).

Here, we see both lines are parallel and \(\vec{a_{1}}=2\hat{i}-3\hat{j}+4\hat{k}\) , \(\vec{a_{2}}= 2\hat{i}-3\hat{j}\) and \(\vec{b}= 3\hat{i}+4\hat{k}\).

\(\therefore \) The shortest distance between parallel lines L1 and L2

\(d= \left | \frac{(3\hat{i}+4\hat{k})\times [(2\hat{i}-3\hat{j})-(2\hat{i}-3\hat{j}+4\hat{k})]}{|3\hat{i}+4\hat{k}|} \right | \)

⇒ \(d= \left | \frac{(3\hat{i}+4\hat{k})\times (-4\hat{k})}{\sqrt{9+16}} \right | \)

⇒ \(d= \left | \frac{12\hat{j}}{5} \right | \) ⇒ \(d= \frac{12}{5} =2.4\) unit.

Hence, option 1 is correct.

Find the shortest distance between the lines \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)

  1. 1
  2. 3
  3. 2
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Shortest Distance Question 11 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\)  and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by:\(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

Calculation:

Here we have to find the shortest distance between the lines ​​\(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)

Let line L1 be represented by the equation \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and line L2 be represented by the equation \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)

⇒ x1 = 0, y1 = 2, z1 = 0  and a1 = -1, b1 = 0, c1 = 1.

⇒ x2 = -2, y2 = 0, z2 = 0  and a2 = 1, b2 = 1, c2 = 0.

∵ The shortest distance between the lines is given by:  \(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

⇒ \(d= \frac{\begin{vmatrix} -2-0 &0-2&0-0 \\ -1& 0 & 1\\ 1& 1 & 0 \end{vmatrix}}{\sqrt{(0-1)^{2}+(0-1)^{2}+(-1-0)^{2}}}\)    

⇒ \(d= \frac{\begin{vmatrix} -2 &-2&0 \\ -1& 0 & 1\\ 1& 1 & 0 \end{vmatrix}}{\sqrt{1+1+1}}\)

⇒ d = 0

Hence, option 4 is correct.

If the shortest distance between parallel lines \(\vec{r}= \hat{i}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\) and \(\vec{r}= \hat{i}+2\hat{j}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\). is \( \sqrt \frac{{k}}{{7}} \) then k?

  1. 8
  2. 40
  3. 10
  4. 20

Answer (Detailed Solution Below)

Option 4 : 20

Shortest Distance Question 12 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)

Calculation:

Given: Equation of lines \(\vec{r}= \hat{i}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\)  and \(\vec{r}= \hat{i}+2\hat{j}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\).

So, by comparing the above equations with \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) we get

⇒ \(\vec{a_{1}}= \hat{i}+2\hat{k}\) , \(\vec{a_{2}}= \hat{i}+2\hat{j}+2\hat{k}\)  and \(\vec{b}= \hat{i}+2\hat{j}+3\hat{k}\).

\(\therefore \) The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)

\(⇒ d= \left | \frac{(\hat{i}+2\hat{j}+3\hat{k})\times [(\hat{i}+2\hat{j}+2\hat{k})-(\hat{i}+2\hat{k})]}{|\hat{i}+2\hat{j}+3\hat{k}|} \right | \)

⇒ \(d= \left | \frac{(\hat{i}+2\hat{j}+3\hat{k})\times 2\hat{j}}{|\sqrt{1+4+9}|} \right | \)

⇒ \(d= \left | \frac{2\hat{k}-6\hat{i}}{\sqrt{14}} \right | \)

⇒ \(d = \sqrt \frac{{40}}{{14}}\)

\(\Rightarrow d = \sqrt \frac{{40}}{{14}} \)  \(\Rightarrow d = \sqrt \frac{{20}}{{7}} \)

⇒ k = 20

Hence, option 4 is correct.

Find the shortest distance between the lines \(\frac{{x + 3}}{{ - \;4}} = \frac{{y - 6}}{3} = \frac{z}{2}\;and \ \frac{{x + 2}}{{ - \;4}} = \frac{y}{1} = \frac{{z - 7}}{1}\)

  1. 6
  2. 7
  3. 9
  4. 11

Answer (Detailed Solution Below)

Option 3 : 9

Shortest Distance Question 13 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: Equation of lines is \(\frac{{x + 3}}{{ - \;4}} = \frac{{y - 6}}{3} = \frac{z}{2}\;and \ \frac{{x + 2}}{{ - \;4}} = \frac{y}{1} = \frac{{z - 7}}{1}\)

By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get

⇒ x1 = - 3, y1 = 6, z1 = 0, a1 = - 4, b1 = 3 and c1 = 2

Similarly, x2 = - 2, y2 = 0, z2 = 7, a2 = - 4, b2 = 1 and c2 = 1

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&{ - \;6}&7\\ { - \;4}&3&2\\ { - \;4}&1&1 \end{array}} \right|\)

Similarly, \(\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} = \sqrt {81} = 9\)

As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

\(\Rightarrow SD = \frac{{\left| {\begin{array}{*{20}{c}} 1&{ - \;6}&7\\ { - \;4}&3&2\\ { - \;4}&1&1 \end{array}} \right|}}{9} = \frac{{81}}{9} = 9\)

The shortest distance between the lines

\(\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3} \) and \( \frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2} \) is

  1. 2√ 6
  2. 36
  3. 63
  4. 62

Answer (Detailed Solution Below)

Option 2 : 36

Shortest Distance Question 14 Detailed Solution

Download Solution PDF

Concept -

Shortest distance between two lines is:

d = \(\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|\)

Explanation -

The given lines are :

\(\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3}\) and \( \frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2}\)

So, \(\vec{b}_1=4 \hat{i}+5 \hat{j}+3 \hat{k}\)

\(\vec{b}_2=3 \hat{i}+4 \hat{j}+2 \hat{k}\)

\(\vec{a}_1=4 \hat{i}-2 \hat{j}-3 \hat{k}\)\( \vec{a}_2=\hat{i}+3 \hat{j}+4 \hat{k}\)

∴ \(\vec{b}_1 \times \vec{b}_2=\left|\begin{array}{lll} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & 3 \\ 3 & 4 & 2 \end{array}\right|\)

\((10-12) \hat{i}-(8-9) \hat{j}+(16-15) \hat{k}\)

\(-2 \hat{i}+\hat{j}+\hat{k}\)

Shortest distance, \(d=\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|\)

\(\left|\frac{(3 \hat{i}-5 \hat{j}-7 \hat{k}) \cdot(-2 \hat{i}+\hat{j}+\hat{k})}{\sqrt{4+1+1}}\right|\)

\(\left|\frac{-6-5-7}{\sqrt{6}}\right|=\frac{18}{\sqrt{6}}=3 \sqrt{6}\) units

Hence Option (2) is correct.

Find the shortest distance between the lines \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

  1. \(\frac{5}{\sqrt {42}}\)
  2. 2
  3. \(\frac{9}{\sqrt {42}}\)
  4. \(\frac{11}{\sqrt {42}}\)
  5. 3

Answer (Detailed Solution Below)

Option 3 : \(\frac{9}{\sqrt {42}}\)

Shortest Distance Question 15 Detailed Solution

Download Solution PDF

Concept:

The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\)  and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by:\(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

Calculation:

Here we have to find the shortest distance between the lines ​​\(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

Let line L1 be represented by the equation \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and line L2 be represented by the equation \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

⇒ x1 = 5, y1 = -2, z1 = 0  and a1 = 7, b1 = -5, c1 = 1.

⇒ x2 = 0, y2 = 0, z2 = 0  and a2 = 1, b2 = 2, c2 = 3.

∵ The shortest distance between the lines is given by:  \(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

 

⇒ \(d= \frac{\begin{vmatrix} 0-5 &0+2&0-0 \\ 7& -5 & 1\\ 1& 2 & 3 \end{vmatrix}}{\sqrt{(-15-2)^{2}+(1-21)^{2}+(14+5)^{2}}}\)

⇒ \(d= \frac{\begin{vmatrix} -5 &2&0 \\ 7& -5 & 1\\ 1& 2 & 3 \end{vmatrix}}{\sqrt{(-17)^{2}+(-20)^{2}+(19)^{2}}}\)

\(d= \frac{-5(-15-2)-2(21-1)}{\sqrt{289+400+361}}\)

\(d= \frac{85-40}{\sqrt{1050}} = \frac{9}{\sqrt {42}}\)

Hence, option 3 is correct.

Get Free Access Now
Hot Links: teen patti customer care number teen patti - 3patti cards game downloadable content teen patti master app teen patti comfun card online