Find the shortest distance between the lines whose vector equations are r=(3s+2)i^3j^+(4s+4)k^ and r=(3t+2)i^3j^+(4t)k^

  1. 2.4
  2. 2
  3. 1.4
  4. 1.8
  5. 0

Answer (Detailed Solution Below)

Option 1 : 2.4

Detailed Solution

Download Solution PDF

Concept:

The shortest distance between parallel lines r=a1+λb and r=a2+μb is given by: d=|b×(a2a1)|b||

Calculation:

L1r=(3s+2)i^3j^+(4s+4)k^ can be written as r=2i^3j^+4k^+s(3i^+4k^).

L2r=(3t+2)i^3j^+(4t)k^ can be written as r=2i^3j^+t(3i^+4k^).

Here, we see both lines are parallel and a1=2i^3j^+4k^ , a2=2i^3j^ and b=3i^+4k^.

 The shortest distance between parallel lines L1 and L2

d=|(3i^+4k^)×[(2i^3j^)(2i^3j^+4k^)]|3i^+4k^||

⇒ d=|(3i^+4k^)×(4k^)9+16|

⇒ d=|12j^5| ⇒ d=125=2.4 unit.

Hence, option 1 is correct.

Get Free Access Now
Hot Links: teen patti win teen patti master downloadable content teen patti chart teen patti app teen patti all games