Functions of Several Variables MCQ Quiz in বাংলা - Objective Question with Answer for Functions of Several Variables - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Apr 1, 2025

পাওয়া Functions of Several Variables उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Functions of Several Variables MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Functions of Several Variables MCQ Objective Questions

Top Functions of Several Variables MCQ Objective Questions

Functions of Several Variables Question 1:

Let S be the set \((\alpha, \beta) \in \mathbb{R}^2\) such that \(\frac{x^\alpha y^\beta}{\sqrt{x^2+y^2}} \rightarrow 0\) as \( \rm (x, y) \rightarrow(0,0) \) then S is contain in

  1. \( \{(\alpha, \beta): \alpha>0, \beta>0\}\)
  2. \( \{(\alpha, \beta): \alpha>2, \beta>2\} \)
  3. \(\{(\alpha, \beta): \alpha+\beta<1\} \)
  4. \(\{(\alpha, \beta): \alpha+4 \beta>1\}\)

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 1 Detailed Solution

Explanation:

α = β = 1/4 and x = y then \(\frac{x^α y^β}{\sqrt{x^2+y^2}}\) = \(\frac{\sqrt{x.x}}{\sqrt{x^2+x^2}}\)\(\frac{\sqrt x}{{x}\sqrt 2}\) → ∞ as x → 0

So (1) is false

Let x = rcosθ, y = rsinθ then

\(\lim_{(x, y)\to(0. 0)}\)\(\frac{x^{α} y^{β}}{\sqrt{x^2+y^2}}\) = \(\lim_{r\to0}\frac{r^{α}\cos^{α}\theta r^{β}\sin^{β}\theta}{r}\) = \(\lim_{r\to0}r^{α+β-1}\cos^{α}\theta \sin^{β}\theta\) = 0 if α + β - 1 > 0

i.e., if α + β > 1

(3) is false. Also by taking similar example as (1), we can show that (3) is false.

(2): \( \{(\alpha, \beta): \alpha>2, \beta>2\} \)

In this case α + β > 1 satisfies.

(2) is true.

(4): Let α = 1/2, β = 1/2

Then α + 4β > 1

But \(\lim_{(x, y)\to(0. 0)}\)\(\frac{x^{α} y^{β}}{\sqrt{x^2+y^2}}\) = \(\lim_{r\to0}r^{α+β-1}\cos^{α}\theta \sin^{β}\theta\) = \(\lim_{r\to0}r^{\frac12+\frac12-1}\cos^{\frac12}\theta \sin^{\frac12}\theta\) = \(\cos^{\frac12}\theta \sin^{\frac12}\theta\) ≠ 0

(4) is false.

Functions of Several Variables Question 2:

A continuous function v : Rn → R is said to bev radially unbounded if ______________. 

  1. v(0) ≠ 0 
  2. v(0) =0
  3. v(0) = ∞
  4. v(0) = 1

Answer (Detailed Solution Below)

Option 2 : v(0) =0

Functions of Several Variables Question 2 Detailed Solution

Explanation:

it is common for many functions that are radially unbounded to also satisfy v(0) = 0,

especially in the field of machine learning and optimization, given that many loss/objective functions coincide with this property. 

Functions of Several Variables Question 3:

Let \(f: R^2 \rightarrow R \)  be defined by

\(f(x,y) = \begin{cases} \frac{xy^2}{x+y}, & \text {if } {x+y} \neq 0 \\ 0, & \text {if } x+y = 0 \end{cases} \)

Then the value of \(-5 (5 \frac{\partial^2 f}{\partial x \partial y} -5\frac{\partial^2 f}{\partial y \partial x})\)  at the point (0,0) is

  1. 5
  2. -5
  3. 25
  4. -25

Answer (Detailed Solution Below)

Option 3 : 25

Functions of Several Variables Question 3 Detailed Solution

Concept:

\(f_{xy} = \lim_{h \to 0} \lim_{k \to 0} \frac{F(h,k)}{hk} \)

and

\(f_{yx} = \lim_{k \to 0} \lim_{h \to 0} \frac{F(h,k)}{hk} \)

where F(h, k) = f(h, k) - f(h,0) - f(0,k) + f(0,0).

Explanation: 

Since F(h, k) = f(h, k) - f(h,0) - f(0,k) + f(0,0)

Now,  \(F(h, k) = \frac{hk^2}{h+ k} - 0 - 0 + 0 = \frac{hk^2}{h+k} \)

\(f_{xy} = \lim_{h \to 0} \lim_{k \to 0} \frac{hk^2}{hk(h+k)} \)

\(= \lim_{h \to 0} \lim_{k \to 0} \frac{k}{h+k} \)

= 0

\(f_{yx} = \lim_{k \to 0} \lim_{h \to 0} \frac{hk^2}{hk(h+k)} \)

\(= \lim_{k \to 0} \frac{k}{k} \)

= 1

Therefore, \(-5 (5 \frac{\partial^2 f}{\partial x \partial y} -5\frac{\partial^2 f}{\partial y \partial x})\) = \(-5 (5f_{xy} - 5 f_{yx}) \)  at (0,0) = -5(0 -5 ×1) = 25

Hence Option(3) is the correct answer.

Functions of Several Variables Question 4:

Which of the following is/are Not True?

  1. \(\frac{(x+y)^k}{2^k} \leq max{(x^k , y^k) } \) for all x, y>0 and all k \(\geq \)1.
  2. \(\sin{ \frac{x+y}{2}} \leq \frac{(\sin x+\sin y)}{2} \) for all x, y>0
  3. \(e^(\frac{x+y}{2}) \leq \frac{e^x +e^y }{2} \) for all x,y>0 
  4. \(log\frac{x+y}{2} \leq \frac {\log x+\log y}{2}\) for all x, y>0

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 4 Detailed Solution

Concept:

 Arithmetic Mean \(\geq \) Geometric Mean

A.M \(\geq \) G.M

Explanation:

Option(1): \(\frac{(x+y)^k}{2^k} \leq max{(x^k , y^k) } \) for all x, y>0 and all k \(\geq \)1.

For k=1

\(\frac{(x+y)}{2} < max{(x , y) } \)

Let for k=t

\(\frac{(x+y)^t}{2^t} \leq max{(x^t , y^t) } \) holds.

For k = t+1

LHS: \(\frac{(x+y) ^{t+1}}{2 ^{t+1}} \) = \(\frac{(x+y)^t}{2^t} \) \(\cdot \)\(\frac{(x+y)}{2} \) \(\leq max{(x^t , y^t) } \)\(\cdot \)\(max(x,y) \) \(\leq \) \(max{(x^{t +1}, y^{t+1} )} \) =RHS

Hence : \(\frac{(x+y)^k}{2^k} \leq max{(x^k , y^k) } \) for all x, y>0 is true by Principal of mathematical induction.

so, Option(1) is correct.

Option(2): 

\(\sin{ \frac{x+y}{2}} \leq \frac{(\sin x+\sin y)}{2} \) for all x, y>0

this does not hold for x= \(\frac{\pi}{6} \) and  y= \(\frac{\pi}{3} \).

LHS: sin \(\pi \) = 0 & RHS:  \(\sqrt{3} +1 \)

So, Option (2) is not correct.

Option(3):

Arithmetic mean for \(e^{x} \) and  \(e^y \)=  \(\frac{e^x + e^y }{2} \)

Geometric mean for \(e^{x} \) and  \(e^y \)=  \(\sqrt {e^x \cdot e^y } \)

since A.M \(\geq \) G.M

so, \(\frac{e^x + e^y }{2} \)\(\geq \)\(\sqrt {e^x \cdot e^y } \)

Option(3) is correct.

Option(4):

Arithmetic mean for \(\log x \) and  \(\log y\) = \(\frac{​​​​\log x+\log y}{2} \)

Geometric mean for \(\log x \) and  \(\log y\) = \(​​​​\sqrt{\log x \cdot \log y} \) = \(​​​​\frac{1}{2} {\log( x + y)} \)

since A.M \(\geq \) G.M

\(\frac{​​​​\log x+\log y}{2} \)\(\geq \)\(​​​​\frac{1}{2} {\log( x + y)} \)

Option(4) is not correct.

Hence Option(2) and Option(4) are Answers.

Functions of Several Variables Question 5:

Consider the function f : ℝ→ ℝ defined by

\(f(x, y)= \begin{cases}(x+y)^2 \cos \frac{1}{x+y} & \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

Which of the following statements are true?

  1. The partial derivative fx exist at (0, 0).
  2. The partial derivative fx is continuous at (0, 0).
  3. The partial derivative fy exist at (0, 0).
  4. The partial derivative fy is continuous at (0, 0).

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 5 Detailed Solution

Explanation:

\(f(x, y)= \begin{cases}(x+y)^2 \cos \frac{1}{x+y} & \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

 

(1): fx(0, 0) = \(\lim_{h\to0}{f(h,0)-f(0,0)\over h}\) = \(\lim_{h\to0}{h^2\cos\frac 1h-0\over h}\) = \(\lim_{h\to0}h\cos\frac 1h\) = 0

So, the partial derivative fx exist at (0, 0).

(1) is true

(3): fy(0, 0) = \(\lim_{k\to0}{f(0,k)-f(0,0)\over k}\) = \(\lim_{k\to0}{k^2\cos\frac 1k-0\over k}\) = \(\lim_{k\to0}k\cos\frac 1k\) = 0

So, the partial derivative fy exist at (0, 0).

(3) is true.

(3): fx(x, y) = \(\begin{cases}2(x+y) \cos \frac{1}{x+y} -(x+y)^2\sin{1\over x+y}\left(-1\over(x+y)^2\right)& \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

                 = \(\begin{cases}2(x+y) \cos \frac{1}{x+y} +\sin{1\over x+y}& \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

Now, \(\lim_{(x, y)\to(0, 0)}f_x(x, y)\) = \(\lim_{(x, y)\to(0, 0)}\left(2(x+y) \cos \frac{1}{x+y} +\sin{1\over x+y}\right)\) does not exist as \(\lim_{(x, y)\to(0, 0)}\sin{1\over x+y}\) does not exist

Hence the partial derivative fx is not continuous at (0, 0).

(2) is false

(4): fy(x, y) = \(\begin{cases}2(x+y) \cos \frac{1}{x+y} -(x+y)^2\sin{1\over x+y}\left(-1\over(x+y)^2\right)& \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

                 = \(\begin{cases}2(x+y) \cos \frac{1}{x+y} +\sin{1\over x+y}& \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

Now, \(\lim_{(x, y)\to(0, 0)}f_y(x, y)\) = \(\lim_{(x, y)\to(0, 0)}\left(2(x+y) \cos \frac{1}{x+y} +\sin{1\over x+y}\right)\) does not exist as \(\lim_{(x, y)\to(0, 0)}\sin{1\over x+y}\) does not exist

Hence the partial derivative fy is not continuous at (0, 0).

(4) is false.

Functions of Several Variables Question 6:

Consider the functions \(f(x, y) = x^2 + y^2 \)  and g(x, y) = x + y defined on\( \mathbb{R}^2 \). Suppose we are restricted to the constraint g(x, y) = 1 .

Which of the following statements is true?

  1. The function f has no global extreme value subject to the constraint g(x, y) = 1 .  
  2. The function f has global extreme values at the points where \(x = \pm 1, y = 0 \quad or \quad x = 0, y = \pm 1 \).  
  3.  The function g has no global extreme value subject to the constraint f(x, y) = 1 .  
  4.  The function g has a global extreme value at (0, 1) subject to the constraint f(x, y) = 1 .

Answer (Detailed Solution Below)

Option 2 : The function f has global extreme values at the points where \(x = \pm 1, y = 0 \quad or \quad x = 0, y = \pm 1 \).  

Functions of Several Variables Question 6 Detailed Solution

Explanation:

The constraint g(x, y) = 1 represents the line x + y = 1 .

Substituting y = 1 x into \(f(x, y) = x^2 + y^2 \) , we get:

\(f(x, 1 - x) = x^2 + (1 - x)^2 = 2x^2 - 2x + 1. \)
 
To find the extrema,

we compute the derivative of f(x, 1 x) :

\(\frac{d}{dx} \left( 2x^2 - 2x + 1 \right) = 4x - 2. \)
 
Setting the derivative to zero:

\(4x - 2 = 0 \quad \Rightarrow \quad x = \frac{1}{2}. \)
 
Substituting  \(x = \frac{1}{2} \)  into y = 1 x , then  \( y = \frac{1}{2} \) .

The minimum value of f(x, y) occurs at (x, y) = \(\left( \frac{1}{2}, \frac{1}{2} \right) \) ,

 

Determine if This is a Minimum or Maximum: 

the second derivative of f(x, 1 x) :

\(\frac{d^2}{dx^2} \left( 2x^2 - 2x + 1 \right) = 4 \)

Since the second derivative is positive. 

The function f(x, 1 x) has a local minimum at x =\( \frac{1}{2} \), and hence a global minimum on the constraint line x + y = 1 .

Substitute x = \(\frac{1}{2} \)  into f(x, 1 x) to find the minimum value:

\(f\left( \frac{1}{2}, \frac{1}{2} \right) = 2\left( \frac{1}{2} \right)^2 - 2\left( \frac{1}{2} \right) + 1 = \frac{1}{2} - 1 + 1 = \frac{1}{2} \)

Thus, the minimum value of f(x, y) subject to the constraint g(x, y) = 1 is \(\frac{1}{2} \)  ,

and it occurs at\( \left( \frac{1}{2}, \frac{1}{2} \right) \).

Check the Behavior at Boundary Points

We now check the behavior of f(x, y) at some boundary points where g(x, y) = 1 .

When x = 1 , we get y = 0 , so:

f(1, 0) = \(1^2 + 0^2 \) = 1

When x = 0 , we get y = 1 , so:

f(0, 1) = \( 0^2 + 1^2 \) = 1

These values are larger than the minimum value of \(\frac{1}{2} \) at \(\left( \frac{1}{2}, \frac{1}{2} \right) \) ,

confirming that the minimum occurs at \( \left( \frac{1}{2}, \frac{1}{2} \right) \) .

⇒ The function f has global extreme values at the points where  \(x = \pm 1, y = 0 \)  or  \(x = 0, y = \pm 1 \) .

Hence Option(2) is the correct Answer. 

Functions of Several Variables Question 7:

Consider the function f : ℝ→ ℝ defined by

\(f(x, y)= \begin{cases}(x-y)^2 \cos \frac{1}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

Which of the following statement is true?

  1. f is continuous at (0, 0).
  2. f is not continuous at (0, 0).
  3. The partial derivative fx does not exist at (0, 0).
  4. The partial derivative fx is continuous at (0, 0) and fx(0,0) = 1.

Answer (Detailed Solution Below)

Option 1 : f is continuous at (0, 0).

Functions of Several Variables Question 7 Detailed Solution

Explanation:

\(f(x, y)= \begin{cases}(x-y)^2 \cos \frac{1}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

(1) & (2): The function f(x, y) is continuous if \(\lim_{(x, y)\to(0, 0)}f(x, y)\) = f(0, 0)

\(\lim_{(x, y)\to(0, 0)}f(x, y)\) = \(\lim_{(x, y)\to(0, 0)}(x-y)^2\cos{1\over x-y}\)  

                             = \(\lim_{r\to0}r^2(\cosθ-\sinθ)^2\cos{1\over r(\cosθ-\sinθ)}\) = 0 = f(0, 0)

  (putting x = r cosθ, y = r sinθ )

Hence f(x, y) is continuous at (0, 0)

(1) is correct and (2) is incorrect.

(3) & (4): fx(0, 0) = \(\lim_{h\to0}{f(h,0)-f(0,0)\over h}\) = \(\lim_{h\to0}{h^2\cos\frac 1h-0\over h}\) = \(\lim_{h\to0}h\cos\frac 1h\) = 0

So, the partial derivative fx exist at (0, 0).

(3) & (4) both are false.

Functions of Several Variables Question 8:

Define f: ℝ2 → ℝ by \(\rm f(x, y)=\left\{\begin{matrix}\frac{y\sqrt{x^2+y^2}}{x}& if\ x\ne 0\\\ 0, &if\ x=0\end{matrix}\right.\) 

Which of the following statements are true? 

  1. \(\rm \frac{\partial f}{\partial x}(0,0)\) exists
  2. \(\rm \frac{\partial f}{\partial y}(0,0)\) exists
  3. f is not continuous at (0,0) 
  4. f is not differentiable at (0, 0)

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 8 Detailed Solution

Concept:

\(\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h}\)

and \(\frac{\partial f}{\partial y}(0, 0) = \lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h}\)

Explanation:

We are given the function \(f: \mathbb{R}^2 \to \mathbb{R}\) , defined as

\(f(x, y) = \begin{cases} \frac{y \sqrt{x^2 + y^2}}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}\)

We are tasked with determining the truth of various statements about the

partial derivatives, continuity, and differentiability of this function at (0, 0) .

Option 1: To check whether the partial derivative with respect to x exists at (0, 0) ,

we calculate it as follows

\(\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h}\)

When y = 0 , the function reduces to

\(f(x, 0) = 0 \quad \text{for all} \, x \neq 0\)

Thus, \(\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{0 - 0}{h} = 0\)

Hence, \(\frac{\partial f}{\partial x}(0, 0)\) exists and is equal to 0.

Option 2: We calculate the partial derivative with respect to y at (0, 0)

using the limit definition:

\(\frac{\partial f}{\partial y}(0, 0) = \lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h}\)

When x = 0 , the function is defined as f(0, y) = 0 . Thus,

\(\frac{\partial f}{\partial y}(0, 0) = \lim_{h \to 0} \frac{0 - 0}{h} = 0\)

Therefore, \(\frac{\partial f}{\partial y}(0, 0)\) also exists and is equal to 0.

Option 3: Along x = my2 

\(\lim_{(x, y)\to(0, 0)}\frac{y \sqrt{x^2 + y^2}}{x}\) = \(\lim_{y\to0}\frac{y \sqrt{m^2y^4 + y^2}}{my^2}\)

                                = \(\lim_{y\to0}\frac{y^2 \sqrt{m^2y^2 + 1}}{my^2}\) = 1/m which is different for different value of m

Thus, f is not continuous at (0, 0) .

Option 4: A function is differentiable at (0, 0) if it is continuous and its partial derivatives exist and

are continuous in a neighborhood of (0, 0) . Since the function is not continuous at (0, 0) , it cannot

be differentiable there. Thus, f is not differentiable at (0, 0) .

Hence correct options are 1), 2), 3) and 4).

Functions of Several Variables Question 9:

Consider the function f : ℝ→ ℝ defined by

\(f(x, y)= \begin{cases}(x-y)^2 \sin \frac{1}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

Which of the following statements are true?

  1. f is continuous at (0, 0).
  2. The partial derivative fx does not exist at (0, 0).
  3. The partial derivative fx is continuous at (0, 0).
  4. f is differentiable at (0, 0).

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 9 Detailed Solution

Concept:

A function of two variable f(x, y) is differentiable at (0, 0) if \(\lim_{h\to0}\frac{||r(h, k)||}{||(h, k)||}\) = 0 where r(h, k) = f((0, 0)+(h, k))- f(0, 0) - \(\left({\partial f\over \partial x}(0, 0)\quad {\partial f\over \partial y}(0, 0)\right)\begin{pmatrix}h\\k\end{pmatrix}\)  

 Explanation:

\(f(x, y)= \begin{cases}(x-y)^2 \sin \frac{1}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

(1): The function f(x, y) is continuous if \(\lim_{(x, y)\to(0, 0)}f(x, y)\) = f(0, 0)

\(\lim_{(x, y)\to(0, 0)}f(x, y)\) = \(\lim_{(x, y)\to(0, 0)}(x-y)^2\sin{1\over x-y}\)  

                             = \(\lim_{r\to0}r^2(\cosθ-\sinθ)^2\sin{1\over r(\cosθ-\sinθ)}\) = 0 = f(0, 0)

  (putting x = r cosθ, y = r sinθ )

Hence f(x, y) is continuous  at (0, 0)

(1) is correct

(2): fx(0, 0) = \(\lim_{h\to0}{f(h,0)-f(0,0)\over h}\) = \(\lim_{h\to0}{h^2\sin\frac 1h-0\over h}\) = \(\lim_{h\to0}h\sin\frac 1h\) = 0

So, the partial derivative fx exist at (0, 0).

(2) is false

(3): fx(x, y) = \(\begin{cases}2(x-y) \sin \frac{1}{x-y} +(x-y)^2\cos{1\over x-y}\left(-1\over(x-y)^2\right)& \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

                 = \(\begin{cases}2(x-y) \sin \frac{1}{x-y} -\cos{1\over x-y}& \text { if } x \neq y \\ 0 & \text { if } x=y.\end{cases}\)

Now, \(\lim_{(x, y)\to(0, 0)}f_x(x, y)\) = \(\lim_{(x, y)\to(0, 0)}\left(2(x-y) \sin \frac{1}{x-y} -\cos{1\over x-y}\right)\) does not exist as \(\lim_{(x, y)\to(0, 0)}\cos{1\over x-y}\) does not exist

Hence the partial derivative fx is not continuous at (0, 0).

(3) is false

(4): fy(0, 0) = \(\lim_{k\to0}{f(0,k)-f(0,0)\over k}\) = \(\lim_{k\to0}{k^2\sin\frac 1k-0\over k}\) = \(\lim_{k\to0}k\sin\frac 1k\) = 0

\(\left({\partial f\over \partial x}(0, 0)\quad {\partial f\over \partial y}(0, 0)\right)\begin{pmatrix}h\\k\end{pmatrix}\) = \(\left(0\quad 0\right)\begin{pmatrix}h\\k\end{pmatrix}\) = 0

So, r(h, k) = f((0, 0)+(h, k))- f(0, 0) - \(\left({\partial f\over \partial x}(0, 0)\quad {\partial f\over \partial y}(0, 0)\right)\begin{pmatrix}h\\k\end{pmatrix}\)  

               = f(h, k) - 0 - 0 = \((h-k)^2\sin{1\over h-k}\) 

Now, \(\lim_{h\to0}\frac{||r(h, k)||}{||(h, k)||}\) = \(\lim_{(h, k)\to(0,0)}{(h-k)^2\sin{1\over h-k}\over \sqrt{h^2+k^2}}\) 

Putting h = r cosθ, k = r sinθ we get 

\(\lim_{r\to0}{r^2(\cosθ-\sinθ)^2\sin{1\over r(\cosθ-\sinθ)}\over r}\) = 0

Hence f is differentiable at (0, 0).

(4) is correct

Functions of Several Variables Question 10:

Let f : ℝ2 → ℝ2 be defined by f(x, y) = (ex cos(y), ex sin(y)). Then the number of points in ℝ2 that do NOT lie in the range of f is 

  1. 0
  2. 1
  3. 2
  4. infinite

Answer (Detailed Solution Below)

Option 2 : 1

Functions of Several Variables Question 10 Detailed Solution

Concept:

The range of a function f(x, y) refers to all the possible values f(x, y) could be

Solution: 

Here given  f : ℝ2 → ℝ2 and f(x,y) = (ex cos(y), ex sin(y)) 

We know that the range of cos y and sin y lie between -1 to 1 

and range of ex is (0, ∞) 

Hence the range of given function f(x,y) is \ (0,0) 

The point in ℝ2 that does NOT lie in the range of f is (0,0)

number of such points is 1

(2) is correct

Get Free Access Now
Hot Links: teen patti party teen patti master gold apk teen patti app