Curl MCQ Quiz in বাংলা - Objective Question with Answer for Curl - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 15, 2025
Latest Curl MCQ Objective Questions
Top Curl MCQ Objective Questions
Curl Question 1:
If ϕ(x, y, z) is a scalar homogeneous function of degree 4, then \(\rm \nabla .(ϕ \vec{r})=\) will be _______, where \(\rm \vec{r}=x \vec{i}+y \vec{j}+z \vec{k}\)
Answer (Detailed Solution Below)
Curl Question 1 Detailed Solution
Concept:
\(\nabla.(ϕ (\vec{r}))=(\nabla ϕ).\vec{r}+ϕ(\nabla.\vec{r})\)
Explanation:
If ϕ(x,y,z) is scalar homogeneous function og degree 4 and \(\rm \vec{r}=x \vec{i}+y \vec{j}+z \vec{k}\)
Then, \(\rm \vec{r}=(x,y,z)\) & \(\nabla(\phi)=(\frac{\partial{\phi}}{\partial {x}},\frac{\partial{\phi}}{\partial {y}},\frac{\partial{\phi}}{\partial {z}})\)
Now, \(\rm \nabla .(ϕ \vec{r})=\nabla(\phi x \hat{\mathbf{i}}+\phi y \hat{\mathbf{j}}+\phi z \hat{\mathbf{k}})\)
Use, \(\nabla.(ϕ (\vec{r}))=(\nabla ϕ).\vec{r}+ϕ(\nabla.\vec{r})\)
Since, \(\nabla \vec{r}=3\)
\(\nabla.(ϕ (\vec{r}))=(\frac{\partial{\phi}}{\partial {x}},\frac{\partial{\phi}}{\partial {y}},\frac{\partial{\phi}}{\partial {z}}).(x,y,z)+\phi(\nabla . \vec{r})\)
= \(\rm x \frac{\partial{\phi}}{\partial{x}}+y\frac{\partial{\phi}}{\partial{y}}+z\frac{\partial{\phi}}{\partial{z}}+3\phi\)
Given \(\rm \phi(x,y,z)\) is homogenous function of degree 4, \(\rm \phi(λ x,λ y,λ z)=λ^4 \phi(x,y,z)\)
\(\rm x \frac{\partial{\phi}}{\partial{x}}+y\frac{\partial{\phi}}{\partial{y}}+z\frac{\partial{\phi}}{\partial{z}}=4λ^3 \phi(x,y,z)\)
Now, let λ=1
\(\rm x \frac{\partial{\phi}}{\partial{x}}+y\frac{\partial{\phi}}{\partial{y}}+z\frac{\partial{\phi}}{\partial{z}}=4\phi\)
\(\rm \nabla .(ϕ \vec{r})=3\phi+4\phi=7\phi\)
Curl Question 2:
If \(\vec F = \left( {2x + 3y + \lambda z} \right)\hat i + \left( {\beta x + 6y + z} \right)\hat j + \left( {7x - \omega y + 8z} \right)\hat k\)
Is irrotational, then find the value of the product of (λ β ω).
Answer (Detailed Solution Below) -21
Curl Question 2 Detailed Solution
\(\begin{array}{l} \nabla \times \vec F = 0\\ \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {2x + 3y + \lambda z}&{\beta x + 6y + z}&{7x - \omega y + 8z} \end{array}} \right| = 0\\ i\left( { - \omega - 1 } \right) - j\left( {7 - \lambda } \right) + \hat k\left( {\beta - 3} \right) = 0\\ \Rightarrow \omega + 1 = 0\\\Rightarrow \omega = - 1\\ \beta = 3,\lambda =7\\ \lambda \beta \omega = 7 \times 3 \times -1 = - 21 \end{array}\)
Curl Question 3:
Calculate curl of \(\vec F\) for \(\vec F = {x^2}{y^2}\hat i - 2xyz\;\;\hat j + 2yz\;\hat k\) at (1, 1, 1).
Answer (Detailed Solution Below)
Curl Question 3 Detailed Solution
Concept:
Curl \(\vec F = \vec \nabla \times \vec F\)
\(\vec \nabla \left( {\frac{\partial }{{\partial x}}\hat i + \frac{\partial }{{\partial y}}\hat j + \frac{\partial }{{\partial z}}\hat k} \right)\)
\(Curl\;\vec F = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_x}}&{{F_y}}&{{F_z}} \end{array}} \right|\)
Calculation:
= î (2z + 2xY) – ĵ (0 - 0) + k̂ (-2yz-2x2y)
At (1, 1, 1)
⇒ î (2 +2) + 0 ĵ + (-1 -2)k̂
= 4î - 4k̂Curl Question 4:
Vector \(\frac{\vec{r}}{r^3}\) where \(|\vec{r}|={r}\) and \(\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}\) will be
Answer (Detailed Solution Below)
Curl Question 4 Detailed Solution
Concept:
(i) \(\vec{F}\) Irrotational if \(\nabla \times \vec{F}=0\)
(ii) \(\vec{F}\) is solenoidal \(\nabla . \vec{F}=0\)
(iii) \(\nabla. \frac{\vec r}{r^3} = \frac{1}{r^3}\nabla.{\vec r}-\frac{3}{r^4}(r.\nabla r)\)
Explanation:
\(\nabla .F=\nabla. \frac{\vec r}{r^3} = \frac{1}{r^3}\nabla.{\vec r}-\frac{3}{r^4}(r.\nabla r)\)
=\(\frac{1}{r^3}(1+1+1)-\frac{3}{r^4}(x \frac{\partial r}{\partial x}+y \frac{\partial r}{\partial y}+z \frac{\partial r}{\partial z})\)
As, \(r = \sqrt{x^2+y^2+z^2}\)
\(\frac{\partial{r}}{\partial{x}}=\frac{x}{\sqrt{(x^2+y^2+z^2)}}=\frac{x}{r}\)
Similarly, \(\frac{\partial{r}}{\partial{y}}=\frac{y}{r}\) , \(\frac{\partial{r}}{\partial{z}}=\frac{z}{r}\)
=\(\frac{3}{r^4}-\frac{3}{r^4}(\frac{x^2}{r}+\frac{y^2}{r}+\frac{z^2}{r})\)
=\(\frac{3}{r^4}-\frac{3}{r^4}(\frac{r^2}{r})\)
=\(\frac{3}{r^4}-\frac{3}{r^3}=0\)
Now, \(\nabla \times \vec{F}\) = \(\nabla \times (\frac {\vec{r}}{r^3})\) = \(\nabla \times (\frac {x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}}{r^3})\)
\(\nabla \times (\frac {\vec{r}}{r^3})\) = \(\begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{x}{r^3} & \frac{y}{r^3} & \frac{z}{r^3} \end{bmatrix} \)
\(\nabla \times \vec{F} = (\frac{\partial}{\partial {y}}(\frac{z}{r^3})-\frac{\partial}{\partial {z}}(\frac{y}{r^3}))\hat{\mathbf{i}}+(\frac{\partial}{\partial {z}}(\frac{x}{r^3})-\frac{\partial}{\partial {x}}(\frac{z}{r^3}))\hat{\mathbf{j}}+(\frac{\partial}{\partial {x}}(\frac{y}{r^3})-\frac{\partial}{\partial {y}}(\frac{x}{r^3}))\hat{\mathbf{k}}\)
Now, \(\frac{\partial}{\partial{y}}(\frac{z}{r^3})=\frac{\partial}{\partial{y}}(\frac{z}{(x^2+y^2+z^2)^{3/2}})\)
= \(\frac{-3yz}{(x^2+y^2+z^2)^{3/2}}\)
Similarly, \(\frac{\partial}{\partial{y}}(\frac{y}{r^3})=\frac{\partial}{\partial{y}}(\frac{y}{(x^2+y^2+z^2)^{3/2}})\)=\(\frac{-3yz}{(x^2+y^2+z^2)^{3/2}}\)
⇒ \(\frac{\partial}{\partial {y}}(\frac{z}{r^3})-\frac{\partial}{\partial {z}}(\frac{y}{r^3})=0\)
Similarly, \(\frac{\partial}{\partial {z}}(\frac{x}{r^3})-\frac{\partial}{\partial {x}}(\frac{z}{r^3})=0\) & \(\frac{\partial}{\partial {x}}(\frac{y}{r^3})-\frac{\partial}{\partial {y}}(\frac{x}{r^3})=0\)
⇒ \(\nabla \times \vec{F}\) =0
Curl Question 5:
If a continuously differentiable vector function is the gradient of a scalar function, then its curl is
Answer (Detailed Solution Below)
Curl Question 5 Detailed Solution
Concept:
Let ϕ be a function of (x, y, z)
Then grad \(\left( ϕ \right)=\hat{i}\frac{\partial ϕ }{\partial x}+\hat{j}\frac{\partial ϕ }{\partial y}+\hat{k}\frac{\partial ϕ }{\partial z}\)
curl (grad (ϕ)) \(=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ \frac{\partial ϕ }{\partial x} & \frac{\partial ϕ }{\partial y} & \frac{\partial ϕ }{\partial z} \\ \end{matrix} \right|\)
curl (grad (ϕ)) \(=0\hat{i}+0\hat{j}+0\hat{k}\)
curl (grad (ϕ)) = 0Curl Question 6:
If \(\vec F\left( t \right)\) vector has characteristics similar to a straight line, then which option is true
Answer (Detailed Solution Below)
\(\rm \vec F \times \frac{{d\vec F}}{{dt}} = 0\)
Curl Question 6 Detailed Solution
Explanation:
If \(\vec F\left( t \right)\) vector has characteristics similar to a straight line so,
\(\rm \vec F\left( t \right) \Rightarrow constant\ direction\)
so, \(\rm \vec F \times \frac{{d\vec F}}{{dt}} = 0\)
Curl Question 7:
Determine the curl (grad ϕ), where ϕ = x3 + y3 + z3 – 3xyz______
Answer (Detailed Solution Below) 0
Curl Question 7 Detailed Solution
Explanation:
Curl grad ϕ = ∇ × ∇ϕ
According to property of Nable operator (∇)
∇ × ∇ϕ = 0
Where, ϕ is a scalar quantity
Curl Question 8:
If \(\vec r = x\hat i + y\hat j + z\hat k\) and \({\vec a}\) is a constant vector, then \(\nabla \times \left( {\vec a \times \vec r} \right)\) will be
Answer (Detailed Solution Below)
Curl Question 8 Detailed Solution
Let, \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\)
\(\begin{array}{l} \vec a \times \vec r = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{a_1}}&{{a_2}}&{{a_3}}\\ x&y&z \end{array}} \right|\\ \vec a \times \vec r = \hat i\left( {{a_2}z - {a_3}y} \right) - \hat j\left( {{a_1}z - {a_3}x} \right) + \hat k\left( {{a_1}y - {a_2}x} \right) \end{array}\)
\(\nabla \times \left( {\vec a \times \vec r} \right) = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{a_2}z - {a_3}y}&{{a_3}x - {a_1}z}&{{a_1}y - {a_2}x} \end{array}} \right|\)
\(\Rightarrow \hat i\left[ {\frac{\partial }{{\partial y}}\left( {{a_1}y - {a_2}x} \right) - \frac{\partial }{{\partial z}}\left( {{a_3}x - {a_1}z} \right)} \right] - \hat j\left[ {\frac{\partial }{{\partial x}}\left( {{a_1}y - {a_2}x} \right) - \frac{\partial }{{\partial z}}\left( {{a_2}z - {a_3}y} \right)} \right] +\\\;\;\;\; \hat k\left[ {\frac{\partial }{{\partial x}}\left( {{a_3}x - {a_1}z} \right) - \frac{\partial }{{\partial y}}\left( {{a_2}z - {a_3}y} \right)} \right]\)
\(\begin{array}{l} \nabla \times \left( {\vec a \times \vec r} \right) = \hat i\left( {{a_1} + {a_1}} \right) - \hat j\left( { - {a_2} - {a_2}} \right) + \hat k\left( {{a_3} + {a_3}} \right)\\ = 2\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right) = 2\vec a \end{array}\)
Curl Question 9:
curl(grad φ) =
Answer (Detailed Solution Below)
Curl Question 9 Detailed Solution
Explanations:
The curl of the gradient of any scalar function φ is always zero. curl(grad φ) = 0
Curl Question 10:
If the vector F is irrotational, then
Answer (Detailed Solution Below)
Curl Question 10 Detailed Solution
Explanation:
If a vector F is irrotational, then curl of F will be zero i.e. \(\nabla\times \vec F = 0\)
Curl of a vector
\(\vec F = \overrightarrow {{F_x}} \widehat {\dot i} + \overrightarrow {{F_y}} \widehat {\dot J} + \overrightarrow {{F_z}} \hat k\)
\(\nabla = \frac{\partial }{{\partial x}}\widehat {\dot i} + \frac{\partial }{{\partial y}}\widehat {\dot J} + \frac{\partial }{{\partial z}}\hat k\)
\(\nabla \times \vec F = Curl\left( {\vec F} \right) = \left| {\begin{array}{*{20}{c}} i&{\dot J}&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_x}}&{{F_y}}&{{F_z}} \end{array}} \right|\;\)