Line Integral MCQ Quiz in বাংলা - Objective Question with Answer for Line Integral - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 29, 2025

পাওয়া Line Integral उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Line Integral MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Line Integral MCQ Objective Questions

Top Line Integral MCQ Objective Questions

Line Integral Question 1:

The integral c(ydxxdy) is evaluated along the circle x2+y2=14 traversed in counter clockwise direction. The integral is equal to

  1. 0
  2. π4
  3. π2
  4. π4

Answer (Detailed Solution Below)

Option 3 : π2

Line Integral Question 1 Detailed Solution

Concept:

c(ydxxdy)

where C is x2+y2=14 21gh=0

By Green’s Theorem,

(ϕ dx+ψ dy)=(ψxϕy)dxdy

ϕ=yandψ=x

δϕδy=1andδψδx=1

I=(ψxϕy)dxdy=01202π(11) r  dθ  dr

=2(012r.(θ)02π)dr

=2012r.(2π)dr

=2(2π)(r22)012=2π(12)=π2

Line Integral Question 2:

Let I = c(2zdx+2ydy+2xdz) where x, y, z are real, and let C be the straight line segment from point A: (0, 2, 1) to point B: (4, 1, –1). The value of I is ________.

Answer (Detailed Solution Below) -11.1 - -10.9

Line Integral Question 2 Detailed Solution

I=(0,2,1)(4,1,1)(2zdx+2ydy+2xdz)

I=(0,2,1)(4,1,1)(2zdx+2ydy+2xdz)

I=(0,2,1)(4,1,1)(2d(xz)+2ydy)

=2(xz)(0,2,1)(4,1,1)+2(y22)(0,2,1)(4,1,1)

=[2xz+y2](0,2,1)(4,1,1)

[2(4)(1)+(1)2][2]2

= [-8 + 1] – 4

= -7 - 4

= -11

Line Integral Question 3:

The value (up to two decimal places) of a line integral cF(r).dr,forFr=x2i^+y2j^ along C which is a straight line joining (0, 0) to (1, 1) is ______

Answer (Detailed Solution Below) 0.60 - 0.70

Line Integral Question 3 Detailed Solution

Given:

F¯=x2i^+y2j^

F¯.dr¯=(x2i^+y2j^).(dxi^+dyj^)

F¯.dr¯=x2dx+y2

For the given region, straight-line joining (0, 0) to (1, 1)

GATE CE 2018 Shift 2 Assignment Solution 12.docx 2

x = y ⇒ dx = dy

F¯.dr=01x2dx+01x2dx=012x2dx=2(x33)|01

F¯.dr=23=0.667

∴ The value (up to two decimal places) of a line integral cF(r).dr is 0.667

Line Integral Question 4:

The length of the curve

y = log(cosx) between x=π4toπ4

  1. log2
  2. 2log2
  3. log(2.419)
  4. 2log(2.419)

Answer (Detailed Solution Below)

Option 4 : 2log(2.419)

Line Integral Question 4 Detailed Solution

dydx=tanx

Length of the curve is given by:

=π4π41+(dydx)2

=π4π41+(tanx)2=π4π4secxdx=log|secx+tanx||π4π4=log(2+1)log(21)=log(2+121)=2log(2.414)

Line Integral Question 5:

If C represents a line segment between (0,0,0) and (1, 1, 1) in the Cartesian coordinate system, the value (expressed as an integer) of the line integral given below will be:

c[(y+z)dx+(x+z)dy+(x+y)dz]

  1. 2
  2. 3
  3. 4
  4. 0

Answer (Detailed Solution Below)

Option 2 : 3

Line Integral Question 5 Detailed Solution

I=C[(y+z)dx+(x+z)dy+(x+y)dz]

Arranging the terms of the integral given, we get:

I=c[(ydx+xdy)+(zdx+zdz)+(zdy+ydz)]

=cd(xy)+d(xz)+d(yz)

=[xy+xz+yz](0,0,0)(1,1,1)

= [(1 + 1 + 1) – (0)] = 3

Line Integral Question 6:

The value of ∫ (x – 3y2 + z) ds over the line segment C joining the point (0, 0, 0) to the point (1, 1, 1) is

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 1 : 0

Line Integral Question 6 Detailed Solution

Given:

∫ (x - 3y2 + z) ds 

points: (0, 0, 0) and (1, 1, 1)

Analysis:

Equation of line:

 xx1x2x1=yy1y2y1=zz1z2z1

x010y010=z010=t

putting x = y = z = t, we get

∫ (t - 3t2 + t) dt 

[t223t33+t22]01

= (1 - 1) - (0 - 0) = 0

Line Integral Question 7:

Find work done in moving particle once round ellipse x225+y216=1,z=0 under field of force given by F̅ = (2x – y + z) î + (x + y – z2) ĵ + (3x – 2y + 4z) k̂

Answer (Detailed Solution Below) 124 - 127

Line Integral Question 7 Detailed Solution

Explanation:

Workdone=CF¯dr¯

Workdone=C(2xy+z)dx+(x+yz2)dy+(3x2y+4z)dz

As z = 0, dz = 0

W=C(2xy)dx+(x+y)dy

Now,

Taking parametric equation of ellipse,

x = 5 cos θ, y = 4 sin θ

dx = -5 sin θ dθ , dy = 4 cos θ dθ

W=02π(10cosθ4sinθ)(5sinθ)dθ+(5cosθ+4sinθ)(4cosθ)dθ

W=02π{50sinθcosθ+20sin2θ+20cos2θ+16sinθcosθ}dθ

W=02π20(sin2θ+cos2θ)dθ340πsinθcosθdθ

W=20[θ]02π

∴ W = 40 π

Line Integral Question 8:

Let C be the curve, which is the union of two line segments, the first going from (0, 0) to (3, 4) and the second segment going from (3, 4) to (6, 0). Compute the integral C(3dy4dx)

Answer (Detailed Solution Below) -24

Line Integral Question 8 Detailed Solution

First line segment: (0, 0) → (3, 4)

Second line segment: (3, 4) → (6, 0)

Now, the line integral becomes

C(3dy4dx) 

=(0,0)(6,0)(4dx+3dy) 

=[4x2+3y](0,0)(6,0) 

= -4(6) + 3(0)

= -24

Line Integral Question 9:

Find the integral CF¯dr¯ over curve y = x joining (0, 0) & (1, 1)

F̅ = x2 î + xy ĵ

  1. 13
  2. 23
  3. 1
  4. 43

Answer (Detailed Solution Below)

Option 2 : 23

Line Integral Question 9 Detailed Solution

Concept:

CF¯dr¯=CF1dx+F2dy

CF¯dr¯=Cx2dx+xydy

For curve (line) y = x,

dy = dx

Cx2dx+xydy=01x2dx+x2dx

=012x2dx

=23[x3]01

=23

Line Integral Question 10:

For vectors F=3xyi^y2j^ and R=xi^+yj^, the value of CF.dR on the curve C (y = 2x2) in the x-y plane from (0, 0) to (1, 2) is

  1. -1.17
  2. 1.50
  3. -2.67
  4. 2.67

Answer (Detailed Solution Below)

Option 1 : -1.17

Line Integral Question 10 Detailed Solution

F=3xyi^y2j^ and R=xi^+yj^

CF.dR=C(3xyi^y2j^).d(xi^+yj^)

=C(3xydxy2dy)

Substituting y = 2x2 and x is varying from 0 to 1

dy = 4x dx

CF.dR=C(3x(2x2)dx(2x2)2(4xdx)

=01(6x316x5)dx

=[64x4]01[166x6]01

=6486=183212

=76=1.17

Alternate Method:

F=3xyi^y2j^ and

R=xi^+yj^

CF.dR=C(3xyi^y2j^).d(xi^+yj^)

=C(3xydxy2dy)

Let x = t

⇒ dx = dt

y = 2x2 = 2t2

dy = 4tdt

t varies from 0 to 1.

CF.dR=C(3(t)(2t2)dt(2t2)2(4tdt))

=01(6t316t5)dt

=[64t4]01[166t6]01

=6486=183212

=76=1.17

Get Free Access Now
Hot Links: teen patti master new version teen patti lucky teen patti win