What is the state-transition matrix Φ{t) of the following system?

\(\begin{bmatrix}\dot {x_1}\\\ \dot {x_2}\end{bmatrix}=\begin{bmatrix}0&1\\\ -2&-3\end{bmatrix}\begin{bmatrix} {x_1}\\\ {x_2}\end{bmatrix}\)

This question was previously asked in
UPSC IES Electrical 2022 Prelims Official Paper
View all UPSC IES Papers >
  1. \(\Phi(t)=\begin{bmatrix}e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)
  2. \(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)
  3. \(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -e^{-t}+e^{-2t} &-e^{-t}+e^{-2t}\end{bmatrix}\)
  4. \(\Phi(t)=\begin{bmatrix}2e^{-t}-2e^{-2t}&2e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-2e^{-t}+2e^{-2t}\end{bmatrix}\)

Answer (Detailed Solution Below)

Option 2 : \(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.2 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

State transition matrix:

It is defined as inverse Laplace transform of |sI - A|-1

⇒ L-1 |sI - A|-1 = eAt = ϕ(t)

Given as state model, ẋ = A x(t)

Comparing with standard equation ẋ = A x(t) + B u(t)

Calculation:

\(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ -2&-3 \end{array}} \right]\)

\(\left| {sI - A} \right| = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0&1\\ -2&-3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s }&-1\\ { 2}&{s +3} \end{array}} \right]\)

\({\left| {sI - A} \right|^{ - 1}} = \frac{1}{{{s^2+3s+2}}}\;\left[ {\begin{array}{*{20}{c}} {s +3}&1\\ -2&{s} \end{array}} \right]\)

 

Taking inverse Laplace transform,

\(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)

Additional Information

Properties:

State transition matrix, ϕ(t) = eAt

  • ϕ(0) = eA0) = I, Identity matrix
  • \({\phi ^{ - 1}}\left( t \right) = \phi \left( { - t} \right)\)
  • ϕ(t1 + t2) = ϕ(t1) ϕ(t2)
  • [ϕ(t)]n = ϕ(nt)
  • ϕ(t2 – t1) ϕ (t2 – t0) = ϕ (t2 – t0) = ϕ (t1 – t0) ϕ (t2 – t1)      


Trick: The above question can also be solved with the help of trick.

\(\phi \left( 0 \right) = {e^{{A^{\left( 0 \right)}}}} = I\), the Identity matrix.

We can put t = 0, in all the options and can be found the answer.

After putting t = 0, if the matrix becomes an identity matrix, that will be the answer.

Latest UPSC IES Updates

Last updated on May 28, 2025

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More State Space Analysis Questions

Get Free Access Now
Hot Links: rummy teen patti teen patti 100 bonus teen patti vip