Question
Download Solution PDFA మరియు B రెండవ చతుర్భుజ కోణాలు అయినందున, sin A =\(\frac{1}{3}\) మరియు sin B =\(\frac{1}{5}\) , అప్పుడు cos (A - B) విలువను కనుగొనండి.
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFఇచ్చిన:
sin A = \(\frac{1}{3}\)
sin B = \(\frac{1}{5}\)
ఉపయోగించిన సూత్రం:
sin2A + cos2B = 1
cos (A − B) = cosAcosB + sinAsinB
సాధన:
⇒ sin A = \(\frac{1}{3}\)
⇒ cosA=\(\sqrt{1-sin^2A}=\sqrt{1-(\frac{1}{3})^2}=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}} \)
కోణాలు 2వ చతుర్భుజంలో ఉన్నందున
⇒ cosA = \(-\sqrt{\frac{8}{9}} \)
⇒ sin B = \(\frac{1}{5}\)
⇒ cosB=\(\sqrt{1-sin^2B}=\sqrt{1-(\frac{1}{5})^2}=\sqrt{1-\frac{1}{25}}=\sqrt{\frac{24}{25}} \)
కోణాలు 2వ చతుర్భుజంలో ఉన్నందున
⇒ cosB = \(-\sqrt{\frac{24}{25}} \)
ఇప్పుడు సూత్రం ప్రకారం..
⇒ cos (A − B) = cosAcosB + sinAsinB = \(\sqrt{\frac{-8}{9}}\times\sqrt{\frac{-24}{25}}+\frac{1}{3}\times\frac{1}{5}=\sqrt{\frac{8\times24}{9\times25}}+\frac{1}{15}=\frac{8}{3\times5}\sqrt{3}+\frac{1}{15}=\frac{8\sqrt3+1}{15} \)
⇒ కాబట్టి, cos (A - B) విలువ \(\frac{8\sqrt{3}+1}{15}\).
Last updated on Jun 17, 2025
-> The SSC has now postponed the SSC CPO Recruitment 2025 on 16th June 2025. As per the notice, the detailed notification will be released in due course.
-> The Application Dates will be rescheduled in the notification.
-> The selection process for SSC CPO includes a Tier 1, Physical Standard Test (PST)/ Physical Endurance Test (PET), Tier 2, and Medical Test.
-> The salary of the candidates who will get successful selection for the CPO post will be from ₹35,400 to ₹112,400.
-> Prepare well for the exam by solving SSC CPO Previous Year Papers. Also, attempt the SSC CPO Mock Tests.
-> Attempt SSC CPO Free English Mock Tests Here!