If α ∈ (0, π/2), then minimum value of \(2x+\frac{tan^2α}{2x}\) is

  1. tan α 
  2. 0
  3. 2 tan α 
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 2 tan α 
Free
HTET PGT Official Computer Science Paper - 2019
4.4 K Users
60 Questions 60 Marks 60 Mins

Detailed Solution

Download Solution PDF

Concept:

AM, GM, HM Formulas:

If A is the arithmetic mean 

⇔ \({\rm{A}} = \frac{{{\rm{a\;}} + {\rm{\;b}}}}{2}\)

If G is the geometric mean 

⇔ \({\rm{G}} = \sqrt {{\rm{ab}}} \)

Relation between AM, and GM

AM  ≥  GM

Calculation:

Given that,

\(2x+\frac{tan^2α}{2x}\)

Let a = 2x, b = \(\frac{tan^2α}{2x}\)

We know that,

AM  ≥  GM

\(\frac{2x+\frac{tan^2α}{2x}}{2} ≥ \ \sqrt{2x\times\frac{tan^2α}{2x}}\)

⇒ \(2x+\frac{tan^2α}{2x}\) ≥ 2 tan α 

⇒  \(2x+\frac{tan^2α}{2x}\) ∈ [2 tan α, ∞)

Hence, the minimum value is 2 tan α​. 

Latest HTET TGT Updates

Last updated on Jun 6, 2025

-> The HTET TGT Applciation Portal will reopen on 1st June 2025 and close on 5th June 2025.

-> HTET Exam Date is out. HTET TGT Exam will be conducted on 26th and 27th July 2025

-> Candidates with a bachelor's degree and B.Ed. or equivalent qualification can apply for this recruitment.

-> The validity duration of certificates pertaining to passing Haryana TET has been extended for a lifetime.

-> Enhance your exam preparation with the HTET Previous Year Papers.

Get Free Access Now
Hot Links: teen patti pro teen patti rummy 51 bonus teen patti bindaas