यदि θ, समीकरण tan 2θ tan 4θ - 1 = 0; \(0<\theta<\frac{\pi}{2} \) को संतुष्ट करता है, तो निम्नलिखित में से θ का मान क्या है?

This question was previously asked in
CDS Elementary Mathematics 3 Sep 2023 Official Paper
View all CDS Papers >
  1. \(\frac{\pi}{12} \)
  2. \(\frac{\pi}{15} \)
  3. \(\frac{\pi}{6} \)
  4. \(\frac{\pi}{5} \)

Answer (Detailed Solution Below)

Option 1 : \(\frac{\pi}{12} \)
Free
UPSC CDS 01/2025 General Knowledge Full Mock Test
8.1 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

tan 2θ tan 4θ - 1 = 0, \(0<\theta<\frac{\pi}{2} \)

प्रयुक्त अवधारणा:

यदि tan A + tan B = 1 है,

तब, A + B = 900

गणना:

प्रश्न के अनुसार,

⇒ tan 2θ tan 4θ - 1 = 0

⇒ tan 2θ tan 4θ = 1

⇒ 2θ + 4θ = 900

⇒ θ = 150\(\frac{\pi }{12}\)

∴ θ का मान \(\frac{\pi }{12}\) है, जो कि समीकरण tan 2θ tan 4θ - 1 = 0 को संतुष्ट करता है। 

Alternate Methodहमें θ के प्रत्येक मान की जाँच करनी है, \(0<θ<\frac{π}{2} \)

समीकरण tan 2θ tan 4θ - 1 = 0 संतुष्ट हो जाता है। 

विकल्प (1): θ = \(\frac{\pi }{12}\) = 150

⇒ tan 2θ tan 4θ - 1 = tan 2(150) tan 4(150) - 1

⇒ tan 2θ tan 4θ - 1 = tan 300 tan 600 - 1

⇒ tan 2θ tan 4θ - 1 = (\(\frac{1}{√3}\)× √3) - 1 = 0

∴ θ का मान \(\frac{\pi }{12}\) है, जो कि समीकरण tan 2θ tan 4θ - 1 = 0 को संतुष्ट करता है। 

Latest CDS Updates

Last updated on Jun 26, 2025

-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.

-> Candidates had applied online till 20th June 2025.

-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.  

-> Attempt UPSC CDS Free Mock Test to boost your score.

-> Refer to the CDS Previous Year Papers to enhance your preparation. 

More Trigonometry Questions

Get Free Access Now
Hot Links: teen patti master game teen patti master 2025 teen patti fun