\(\rm {{dy}\over {dx}} = {{x+y}\over {x-y}}\) का हल क्या है?

  1. \(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)
  2. \( \log x = tan {y\over x}+{1\over 2}log(1+({y\over x})^2)+c\)
  3. \(\rm \log x = tan^{-1} {y\over x}+{1\over 2}log(1-({y\over x})^2)+c\)
  4. \(\rm \log x = tan {x\over y}+{1\over 2}log(1+({x\over y})^2)+c\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)
Free
NDA 01/2025: English Subject Test
5.7 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

यदि एक अवकल समीकरण में रूप f(x,y)dy = g(x,y)dx है, तो इसे समरूप अवकल समीकरण कहा जाता है, यदि f(x,y) और g(x, y) की डिग्री समान है। 

कुछ उपयोगी सूत्र निम्न हैं,

\(\rm \int {1\over x} dx =ln\ x + C\)

\(\rm \int {1\over 1+x^2} dx =tan^{-1} x + C\)

गणना:

\(\rm {{dy}\over {dx}} = {{x+y}\over {x-y}}\)

y = vx लेने पर जहाँ \(\rm {{dy}\over{dx}} = v+ x{{dv}\over{dx}}\) है, तो हमें निम्न प्राप्त होता है

\(\rm v+ x{{dv}\over{dx}} = {{x+vx}\over {x-vx}}\)

\(\rm v+ x{{dv}\over{dx}} = {{x(1+v)}\over {x(1-v)}}\)

\(\rm x{{dv}\over{dx}} = {{1+v}\over {1-v}} -v\)

\(\rm x{{dv}\over{dx}} = {{1+v-v+v^2}\over {1-v}} \)

\(\rm {{dx}\over{x}} = {{1-v}\over {1+v^2}} dv\)

उपरोक्त समीकरण का समाकलन करने पर हमें निम्न प्राप्त होता है, 

\(\rm \int{{dx}\over{x}} = \int{{1}\over {1+v^2}}dv- \int{{v}\over {1+v^2}}dv\)

\(\rm \log x = \tan^{-1} v-{1\over 2}log(1+v^2)+c\)

अब अंतिम में समीकरण में (v = y/x का मान रखने पर हमें निम्न प्राप्त होता है,

\(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Solution of Differential Equations Questions

Get Free Access Now
Hot Links: teen patti master old version teen patti royal teen patti gold apk download