Question
Download Solution PDFयदि f(x) = \(\rm x^{\tan^{-1}x}\) है, तो f'(1) का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
- \(\rm d\over dx\)xn = nxn-1
- \(\rm d\over dx\)sin x = cos x
- \(\rm d\over dx\)cos x = -sin x
- \(\rm d\over dx\)ex = ex
- \(\rm d\over dx\)ln x = \(\rm1\over x\)
- \(\rm d\over dx\)(ax + b) = a
- \(\rm d\over dx\)tan x = sec2 x
- \(\rm d\over dx\)f(x)g(x) = f'(x)g(x) + f(x)g'(x)
- \(\rm d\over dx\) sin-1 x = \(\rm 1\over\sqrt{1 - x^2}\)
- \(\rm d\over dx\) tan-1 x = \(\rm 1\over1 + x^2\)
गणना:
माना कि y = f(x) = \(\rm x^{\tan^{-1}x}\) है।
दोनों पक्षों में log लेने पर, हमें निम्न प्राप्त होता है
⇒ ln y = ln \(\rm x^{\tan^{-1}x}\)
ln y = tan-1 x (ln x) (∵ log mn = n log m)
x के संबंध में अवकलन करने पर, हमें निम्न प्राप्त होता है
\(\rm {1\over y}{dy\over dx}\) = \(\rm {1\over1 + x^2}(\ln x) + \tan ^{-1}x\left({1\over x}\right)\)
\(\rm {dy\over dx}\) = y × \(\rm \left[{\ln x\over1 + x^2} + {\tan ^{-1}x\over x}\right]\)
\(\rm {dy\over dx}\) = \(\rm x^{\tan^{-1}x}\left[{\ln x\over1 + x^2} + {\tan ^{-1}x\over x}\right]\)
f'(x) = \(\rm {dy\over dx}\) = \(\rm x^{\tan^{-1}x}\left[{\ln x\over1 + x^2} + {\tan ^{-1}x\over x}\right]\)
अब f'(1) = \(\rm 1^{\tan^{-1}1}\left[{\ln 1\over1 + 1^2} + {\tan ^{-1}1\over 1}\right]\)
f'(1) = \(\rm \pi\over4\) या 45°
Last updated on Jul 14, 2025
-> The UP TGT Admit Card (2022 cycle) will be released in July 2025
-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.
-> The UP TGT Notification (2022) was released for 3539 vacancies.
-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh.
-> Prepare for the exam using UP TGT Previous Year Papers.